
Data and Analytic Solutions, Inc.

Page 1 of 16

Optimizing an Overly Complex SQL Query

A Data and Analytic Solution (DAS) client routinely ran an essential production job that started with a

query to retrieve data from an SQL Server®1 database.2 That query was explicitly3 passed from SAS®4 to

the RDBMS5 and ran in 3 hours and 24 minutes6 to produce a SAS® dataset named Country. It joined

20 tables that ranged in size from three rows to nine million rows. An outer series of joins combined

data from 11 tables and a nested join combined data from the other nine tables. The optimization

described in this paper of the complex SQL query reduced the run time to less than eight minutes – a

95% efficiency gain.

The SQL language provides a high-level declarative interface, so the user only specifies what the result is

to be, leaving the actual optimization and decisions on how to execute the query to the RDBMS.7 The

query optimizer attempts to determine the most efficient way to execute a query. It considers possible

query plans for a given query and attempts to determine which of those plans will be the most efficient.

This set of query plans is formed by examining the possible access paths8 and join9 techniques.

Transact-SQL10 is central to using Microsoft™ SQL Server®. Its query optimizer will develop at most 256

plans and picks its estimation of the best plan.11 Unfortunately, the optimizer was not able to develop a

plan for this join of 20 tables that was efficient.

The following is a detailed explanation of how DAS optimized the SQL query and reduced processing

time by 95 percent. The information is both comprehensive and detailed with sufficient code examples

to make the task reproducible. For further information and comments, please contact Gary McQuown

at mcquown@DASconsultants.com . Additional papers may be found on our website at

www.DASconsultants.com.

1 SQL Server is a registered trademark of Microsoft Corporation.
2 See Appendix 1.
3 Explicit SQL pass-through passes database-specific SQL untouched to the database.
4 SAS is a registered trademark of SAS Institute, Inc. in the USA and other countries.
5 A Relational Database Management System (RDBMS) is a software application to manage a collection of
relations. Informally, each relation represents a table of values – each row represents a real-world entity and each
column represents a common attribute for each of those entities. The relational model was introduced by Ted
Codd of IBM Research in 1970.
6 The program used 3 hours and 59 minutes of CPU time on the multiple-CPU Windows Server.
7 Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database Systems, 3rd Edition. Addison-Wesley,
2000. Page 244.
8 Access paths include primary index access, secondary index access, and full file scan.
9 Relational table join techniques include merge join, hash join, and product join.
10 Transact-SQL (T-SQL) is Microsoft's and Sybase's proprietary implementation of SQL.
11 By comparison, DB2's optimizer will develop and evaluate up to 32,768 plans.

mailto:mcquown@DASconsultants.com
http://www.dasconsultants.com/

Data and Analytic Solutions, Inc.

Page 2 of 16

Initial Evaluation
Without access to the RDBMS where the data is stored, the off-site DAS analyst provided SAS® scripts to

an on-site DAS employee who returned the output for evaluation. Initially, we learned about the size of

the tables and the columns in those tables.

The outer series of joins combined the following 11 tables:

• AdHocQuestionnaireDefs had about 300 rows. Only rows where

o the RootAdHocQuestionnaireDefId key was 10709 and

o the IsActive flag was set to 1

were used.

• RefAdHocQuestionnaireDefStatuses had 3 rows.

• AdHocQuestionGroupDefs had about 350 rows.

• RefAdHocQuestionnaireTypes had about 15 rows.

• AdHocQuestionDefs had about 2,600 rows.

• RefAdHocQuestionTypes had 10 rows.

• AdHocQuestionnaires had about 250,000 rows.

• AdHocQuestionnaireIdentifiers had about 250,000 rows.

• AdHocQuestions had about 3,500,000 rows.

• AdHocAnswers had about 700,000 rows.

• AdHocAnswerDefs had about 4,000 rows.

The output from this outer series of joins consisted of about 1,400,000 rows and 12 columns. If the

optimizer can come up with a fairly efficient plan for the join, it should run in just a few minutes.

The nested join combined the following nine tables:

• InspectionTasks had about 130 rows. Only rows where the InspectionTaskCode was either

06A03 or 06A04 were used.

• EstablishmentTaskLists had about 5,000,000 rows.

• EstablishmentNumberOrgLevel had about 8,000 rows.

• EstablishmentShiftXInspectTask had about 9,000,000 rows.

• EstablishmentShifts had about 9,000 rows.

• RefInspectionTaskJustifications had about 30 rows.

• InspectionResults had about 8,000,000 rows.

• Users had about 12,000 rows.

• Areas had about 60 rows. Only rows where the BusinessUnitId was set to 1 were used.

The output from this nested series of joins consisted of about 18,000 rows and 12 columns. If the

optimizer can come up with a fairly efficient plan for the join, it should run in less than a minute.

Data and Analytic Solutions, Inc.

Page 3 of 16

Both of these queries return character variables from SQL Server® varChar12 columns that are extremely

long given the lengths of the character strings in these columns. These long character variables should

be shortened after the download.

After that evaluation, the DAS analyst estimated that a more-efficient process should be able to create

the Country dataset in about 15 minutes.

Creating a Table of Questionnaire, Question, and Answer Data
First, we queried the RDBMS to create a SAS® dataset named Questionnaire. This dataset consisted of

about 1.4 million rows with a foreign key named TaskConnector that would be used to link to the data

from the nested query. SAS® implicitly passed the query to the RDBMS because all of the code in the

SAS® SQL query could be converted to Transact-SQL. The query ran in about four minutes.

Long Character Variables
TaskConnector exists in the RDBMS as a 4000-byte varChar variable. However, SAS® has no varChar

data type and the key arrives in SAS® as a 4,000 byte character string. Examination of the

TaskConnector keys revealed that each consisted of either

• a nine-digit decimal integer (in about 3% of the rows) or

• a decimal integer of one to three digits followed immediately by the canonical representation of

a UUID13 – with either upper-case letters or lower-case letters.

The UUID part of the two-part TaskConnector keys sometimes used upper-case letters to represent

the six largest hexadecimal digits and sometimes it used lower-case letters. While lower-case letters

seem to be the standard across most applications, SQL Server® uses an upper-case standard.14

A SAS® SQL query implicitly15 passed to the SQL Server® dataset to join the 11 tables in the outer join

produced the QandA table in about 3½ minutes.16

12 In SQL Server, the varChar data type is a variable-length, non-Unicode string data with a maximum length that
can be specified from 1 through 8,000. The storage size is the actual length of the data entered + 2 bytes.
13 A universally unique identifier (UUID) is a 128-bit integer. That is, it is an integer with 2128 possible unique
values. The intent is to enable distributed systems to uniquely identify information without significant central
coordination. In its canonical form, a UUID is represented by 32 hexadecimal digits, displayed in five groups
separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters (32 alphanumeric characters and four
hyphens).
14 SAS uses the lower-case standard for its canonical form of the UUID.
15 With implicit SQL pass-through (identified by the use of a LIBNAME statement pointing to the relational
database) SAS will attempt to convert the SAS SQL scripts to SQL that the target database can understand.
16 See Appendix 2.

Data and Analytic Solutions, Inc.

Page 4 of 16

The SQL Server® database uses the varChar data type to allow short character strings to be stored

efficiently in columns defined to allow long strings. However, SAS® does not have a varChar equivalent

and those columns come to SAS® as fixed-length variables padded with blanks to the full length of the

defined varChar column in SQL Server®. Thus, character strings in the QandA table were significantly

longer than needed. Specifically

• Name was 50 bytes but the longest string was 29 bytes,

• Title was 100 bytes but the longest string was 19 bytes,

• QuestionText was 4,000 bytes but the longest string was 207 bytes,

• QuestionType was 20 bytes but the longest string was 15 bytes,

• Answer was 4,000 bytes but the longest string was 388 bytes, and

• TaskConnector was 4,000 bytes but the longest string was 39 characters

We can use the SAS® SQL procedure to create a series of macro variables – each with the length of the

longest string found in each of these character variables. Then we can use those macro variables in a

SAS® DATA step to shorten the lengths of those character variables. While we have our data in the

DATA step, it would be useful to create a variable for the integer portion of the TaskConnector and

another variable for the UUID portion of the TaskConnector.17

The query that creates the six macro variables ran in about 23 seconds and the DATA step that

shortened the variables ran in about 24 seconds.

Creating a Table of Inspection and Establishment Data
Let's create a dataset of inspection and establishment data – call it Inspection – by submitting the

nested part of the original query as an independent query. We want to join

• InspectionTasks,

• EstablishmentTaskLists,

• EstablishmentNumberOrgLevel,

• EstablishmentShiftXInspectTask,

• EstablishmentShifts,

• RefInspectionTaskJustifications,

• InspectionResults,

• Users, and

• Areas.

17 See Appendix 3.

Data and Analytic Solutions, Inc.

Page 5 of 16

SAS® will implicitly pass a query to the RDBMS if it can be converted to the query language that is used

by that RDBMS. However, the InspectionResults table in the database has a column named

EtsbablishmentShiftXInspectTaskId18 and that name is 33 characters long while SAS® only allows

column names up to 32 characters. So, we must explicitly pass a Transact-SQL query to SQL Server®.

This query ran in about three seconds. It returned about 18 thousand rows and 12 columns.

Long Character Variables
PrimaryEstablishmentNumber came from SQL Server® as a 500-byte character variable but the

longest string returned was seven bytes. Other varChar values arrived longer then prudent for SAS®.

We shortened them to lengths suggested by the data.

Creating the Country Dataset
Finally, we need to join the SAS® Questionnaire dataset with the SAS® Inspection dataset by

matching the TaskConnector from Questionnaire with the IdentifierValue from Inspection. We

will sort the output Country dataset on the GrpSortOrd values and then on the QDefSortOrd values

within each level of GrpSortOrd.19 This query ran in about 20 seconds to produce 1.4 million rows and

20 columns.

Upper-Case and Lower-Case Canonical Representation of UUIDs
Almost 800 thousand of the UUID values in the TaskConnector column had lower-case letters for the

larger hexadecimal digits. These represented about 10 thousand distinct values. In all, we had about 18

thousand distinct case-insensitive values in the UUID section of the TaskConnector column.

We have about four hundred distinct lower-case TaskConnector values that match to IdentifierValue

using a case-insensitive join.

The original query concatenates the Id columns from the InspectionTasks and

EstablishmentShiftXInspectTask tables in a nested join using the following code.

select rtrim(it.Id) + rtrim(esit.Id) as IdentifierValue

Then the job joins that nested join (alias: a) with IdentifierValue values from the

AdHocQuestionnaireIdentifiers table.

The Id column in the InspectionTasks table is an integer and the Id column in the

EstablishmentShiftXInspectTask table is a uniqueIdentifier20 (UUID) – a 16-byte integer.

18 Note: The name of the variable is probably a typo and should have been EstablishmentShiftXInspectTaskId which
is 32 characters long.
19 See Appendix 7.
20 SQL Server's uniqueIdentifier data type is a UUID.

Data and Analytic Solutions, Inc.

Page 6 of 16

The rTrim()21 function converted the keys to character strings. No problem with the Id from the

InspectionTasks table because the result is all decimal digits. However, when rTrim() cast the

uniqueIdentifier value to a character string, that string had upper-case letters representing the larger

hexadecimal digits (e.g.: B9CA9D3E-7EFC-E111-93FF-005056945884).22

The problem is that some of the IdentifierValue values in AdHocQuestionnaireIdentifiers table
have upper-case letters and some have lower-case letters! When used as a key for the equi-join of the
tables, case matters!

on a.IdentifierValue = AHQI.IdentifierValue

Perhaps we should add the following line to the DATA step that shortens the character variables in

Questionnaire.23

TaskConnector = upCase(TaskConnector) ;

Conclusion
The original query to download the Country data ran on the 10th of December in about 3½ hours and

downloaded 1,178,499 rows. While this was only a single step, the query was simply too complex for

the SQL Server® query optimizer.

While our solution increases this single step to seven steps, the total run time is only about 5½ minutes

to return 1,450,155 rows.24 That's about 50 times faster!

21 The Transact-SQL rTrim() function removes trailing spaces from a character argument.
22 SAS has a function called uuidGen() which generates a UUID and returns it as either a string of hexadecimal digits
in groups separated by hyphens (e.g.: b9ca9d3e-7efc-e111-93ff-005056945884) or as a 16-byte binary string.
Notice that the SAS uses lower-case letters to represent the larger hexadecimal digits!
23 The SAS upCase() function converts all lower-case ASCII letters (including those with diacritical marks) to upper-
case.
24 The number of returned rows increased from the initial run in December because rows were added to the tables
that the task queried.

Data and Analytic Solutions, Inc.

Page 7 of 16

Appendix 1: Original Query
Create table work.country as

 select *

 from connection to ph (

 select

 AHQRD.Id as QuestionnaireDefID

 , AHQRD.Name

 , AHQGD.Title

 , AHQGD.SortOrder as GrpSortOrd

 , AHQD.QuestionText

 , AHQD.SortOrder QDefSortOrd

 , RAHQT.Code as QuestionType

 , case when AHA.AnswerText is not null then AHA.AnswerText else AHAD.Label end as Answer

 , AHQD.Id as QuestionDefID

 , AHQR.Id as QuestionnaireID

 , AHQI.IdentifierValue as TaskConnector

 , AHQ.Id as QuestionID

 , a.PrimaryEstablishmentNumber

 , a.EstablishmentName

 , a.DistrictNumber

 , a.Description

 , a.startdate

 , a.inspector

 , a.District

 , a.inspectionresultnumber

 from

 AdHocQuestionnaireDefs AHQRD

 join RefAdHocQuestionnaireDefStatuses RADHQDS

 on RADHQDS.Id = AHQRD.AdHocQuestionnaireDefStatusId

 join AdHocQuestionGroupDefs AHQGD on AHQGD.AdHocQuestionnaireDefId = AHQRD.Id

 join RefAdHocQuestionnaireTypes RAHQRT on RAHQRT.Id = AHQRD.AdHocQuestionnaireTypeId

 join AdHocQuestionDefs AHQD on AHQD.AdHocQuestionGroupDefId = AHQGD.Id

 join RefAdHocQuestionTypes RAHQT on RAHQT.Id = AHQD.AdHocQuestionTypeId

 join AdHocQuestionnaires AHQR on AHQR.AdHocQuestionnaireDefId = AHQRD.Id

 join AdHocQuestionnaireIdentifiers AHQI on AHQI.AdHocQuestionnaireId = AHQR.Id

 join AdHocQuestions AHQ

 on AHQ.AdHocQuestionDefId = AHQD.Id and AHQ.AdHocQuestionnaireId = AHQR.Id

 left join AdHocAnswers AHA on AHA.AdHocQuestionId = AHQ.Id

 left join AdHocAnswerDefs AHAD on AHA.AdHocAnswerDefId = AHAD.Id

Data and Analytic Solutions, Inc.

Page 8 of 16

 left join (

 select

 rtrim(it.Id) + rtrim(esit.Id) as IdentifierValue

 , etl.EstablishmentId

 , es.ShiftTypeId

 , eno.PrimaryEstablishmentNumber

 , eno.EstablishmentName

 , eno.DistrictNumber

 , esit.InspectorId

 , ritj.Description

 , convert(date,ir.StartDate) as StartDate

 , u.FirstName + ' ' + u.LastName as Inspector

 , a.Description as District

 , ir.inspectionresultnumber

 from

 InspectionTasks it

 join EstablishmentTaskLists etl on etl.InspectionTaskId = it.Id

 join EstablishmentNumberOrgLevel eno on eno.EstablishmentID = etl.EstablishmentId

 join EstablishmentShiftXInspectTask esit on esit.EstablishmentTaskListId = etl.Id

 left join EstablishmentShifts es on es.Id = esit.EstablishmentShiftId

 left join RefInspectionTaskJustifications ritj

 on ritj.Id = esit.InspectionTaskJustificationId

 join InspectionResults ir with (nolock)

 on ir.EtsbablishmentShiftXInspectTaskId = esit.Id

 join Users u on u.ID = ir.InspectorId

 join (

 select *

 from Areas

 where businessunitid = 1

) a on a.Number = eno.DistrictNumber

 where it.InspectionTaskCode in ('06A03','06A04')

) a on a.IdentifierValue = AHQI.IdentifierValue

 where AHQRD.RootAdHocQuestionnaireDefId = 10709 and AHQRD.IsActive = 1

 order by AHQGD.SortOrder, AHQD.SortOrder

)

;

Data and Analytic Solutions, Inc.

Page 9 of 16

Appendix 2: Query to Create the Questionnaire Dataset
%let qxId = 10709 ;

%let isActive = 1 ;

...

LibName ph

 oledb

 udl_file="C:\Users\Public\Documents\OLEDB\PHISPROD.udl"

 dbmax_text=32767

 dbSasLabel=none

;

Proc sql ;

 Create table Questionnaire as

 select

 AdHocQuestionnaireDefs.Id as QuestionnaireDefID

 , AdHocQuestionnaireDefs.Name

 , AdHocQuestionGroupDefs.Title

 , AdHocQuestionGroupDefs.SortOrder as GrpSortOrd

 , AdHocQuestionDefs.QuestionText

 , AdHocQuestionDefs.SortOrder as QDefSortOrd

 , RefAdHocQuestionTypes.Code as QuestionType

 , case

 when AdHocAnswers.AnswerText is null

 then AdHocAnswerDefs.Label

 else AdHocAnswers.AnswerText

 end as Answer

 , AdHocQuestionDefs.Id as QuestionDefID

 , AdHocQuestionnaires.Id as QuestionnaireID

 , AdHocQuestionnaireIdentifiers.IdentifierValue

 as TaskConnector

 , AdHocQuestions.Id as QuestionISD

Data and Analytic Solutions, Inc.

Page 10 of 16

 from

 /* The RefAdHocQuestionnaireDefStatuses and

 RefAdHocQuestionnaireTypes tables contribute no columns

 to the output dataset. */

 (select

 Id

 , Name

 , AdHocQuestionnaireDefStatusId

 , AdHocQuestionnaireTypeId

 from ph.AdHocQuestionnaireDefs

 where

 (RootAdHocQuestionnaireDefId eq &qxId)

 & (IsActive eq &isActive)

) as AdHocQuestionnaireDefs join ph.RefAdHocQuestionnaireDefStatuses on (

 RefAdHocQuestionnaireDefStatuses.Id

 eq AdHocQuestionnaireDefs.AdHocQuestionnaireDefStatusId

) join ph.AdHocQuestionGroupDefs on (

 AdHocQuestionGroupDefs.AdHocQuestionnaireDefId

 eq AdHocQuestionnaireDefs.Id

) join ph.RefAdHocQuestionnaireTypes on (

 RefAdHocQuestionnaireTypes.Id

 eq AdHocQuestionnaireDefs.AdHocQuestionnaireTypeId

) join ph.AdHocQuestionDefs on (

 AdHocQuestionDefs.AdHocQuestionGroupDefId

 eq AdHocQuestionGroupDefs.Id

) join ph.RefAdHocQuestionTypes on (

 RefAdHocQuestionTypes.Id

 eq AdHocQuestionDefs.AdHocQuestionTypeId

) join ph.AdHocQuestionnaires on (

 AdHocQuestionnaires.AdHocQuestionnaireDefId

 eq AdHocQuestionnaireDefs.Id

) join ph.AdHocQuestionnaireIdentifiers on (

 AdHocQuestionnaireIdentifiers.AdHocQuestionnaireId

 eq AdHocQuestionnaires.Id

) join ph.AdHocQuestions on (

 (AdHocQuestions.AdHocQuestionDefId eq AdHocQuestionDefs.Id)

 & (AdHocQuestions.AdHocQuestionnaireId eq AdHocQuestionnaires.Id)

) left join ph.AdHocAnswers on (

 AdHocAnswers.AdHocQuestionId eq AdHocQuestions.Id

) left join ph.AdHocAnswerDefs as aDef on (

 AdHocAnswers.AdHocAnswerDefId eq AdHocAnswerDefs.Id

)

 order by

 AdHocQuestionGroupDefs.SortOrder

 , AdHocQuestionDefs.SortOrder

 ;

Quit ;

LibName ph clear ;

Data and Analytic Solutions, Inc.

Page 11 of 16

Appendix 3: Find the Maximum Lengths of the Character Strings in Questionnaire
The following character variables came to SAS with these lengths:

• Name 50

• Title 100

• QuestionText 4,000

• QuestionType 20

• Answer 4,000

• TaskConnector 4,000

Proc sql ;

 Select

 max(length(Name)) label="longest Name"

 , max(length(Title)) label="longest Title"

 , max(length(QuestionText)) label="longest QuestionText"

 , max(length(QuestionType)) label="longest QuestionType"

 , max(length(Answer)) label="longest Answer"

 , max(length(TaskConnector)) label="longest TaskConnector"

 into

 :lenName

 , :lenTitle

 , :lenQuestionText

 , :lenQuestionType

 , :lenAnswer

 , :lenTaskConnector

 from QandA ;

Quit ;

 longest

 longest longest longest longest longest Task

 Name Title QuestionText QuestionType Answer Connector

--

 29 19 207 15 388 39

Data and Analytic Solutions, Inc.

Page 12 of 16

Appendix 4: Shorten the Character Variables in Questionnaire
 /* The following step will produce the following warning for each of the character

 variables we are shortening.

 Multiple lengths were specified for the variable ... by input data set(s).

 This may cause truncation of data.

 This is exactly what we want. SAS provides no mechanism to turn off these

 warnings. We could avoid them by renaming the variables in the SET statement,

 writing their values to new variables, and dropping the renamed variables. But,

 that's a lot of code just to avoid the warnings. */

 Data Questionnaire(label="Questionnaires, Questions, and Answers") ;

 Length

 QuestionnaireDefID 8

 Name $&lenName

 Title $&lenTitle

 GrpSortOrd 8

 QuestionText $&lenQuestionText

 QDefSortOrd 8

 QuestionType $&lenQuestionType

 Answer $&lenAnswer

 QuestionDefID 8

 QuestionnaireID 8

 TaskConnector $&lenTaskConnector

 QuestionID 8

 ;

 Set QandA ;

 /* The UUID part of the TaskConnector expresses the larger hexadecimal digits

 sometimes as upper-case letters and sometimes as lower-case letters. We need

 to standardize this before we attempt to merge the QandA table with the

 Inspection table – which will have all the UUID values expressed with upper-

 case letters. */

/* TaskConnector = upCase(TaskConnector) ;*/

 Run ;

 %symDel

 lenName

 lenTitle

 lenQuestionText

 lenQuestionType

 lenAnswer

 lenTaskConnector

 ;

Data and Analytic Solutions, Inc.

Page 13 of 16

Appendix 5: Explicit Pass-Through Query to Create the Inspection Dataset
 /* The included file contains a script to create the &ph_connect macro

 variable. */

 %include "E:\SAS JobRunEnv\DatabaseExec\Autoexec_Svr1.sas";

 Proc sql &sqlOptions ;

 &ph_connect ;

 Create table Inspection as select * from connection to ph (

 select

 rTrim(InspectionTasks.Id) + rTrim(

 EstablishmentShiftXInspectTask.Id

) as IdentifierValue

 , EstablishmentTaskLists.EstablishmentId

 , EstablishmentShifts.ShiftTypeId

 , EstablishmentNumberOrgLevel.PrimaryEstablishmentNumber

 , EstablishmentNumberOrgLevel.EstablishmentName

 , EstablishmentNumberOrgLevel.DistrictNumber

 , EstablishmentShiftXInspectTask.InspectorId

 , RefInspectionTaskJustifications.Description

 , convert(date,InspectionResults.StartDate) as StartDate

 , Users.FirstName + ' ' + Users.LastName as Inspector

 , Areas.Description as District

 , InspectionResults.inspectionresultnumber

 from

 InspectionTasks join EstablishmentTaskLists on (

 EstablishmentTaskLists.InspectionTaskId

 = InspectionTasks.Id

) join EstablishmentNumberOrgLevel on (

 EstablishmentNumberOrgLevel.EstablishmentID

 = EstablishmentTaskLists.EstablishmentId

) join EstablishmentShiftXInspectTask on (

 EstablishmentShiftXInspectTask.EstablishmentTaskListId

 = EstablishmentTaskLists.Id

) left join EstablishmentShifts on (

 EstablishmentShifts.Id

 = EstablishmentShiftXInspectTask.EstablishmentShiftId

) left join RefInspectionTaskJustifications on (

 RefInspectionTaskJustifications.Id

 = EstablishmentShiftXInspectTask.InspectionTaskJustificationId

) join InspectionResults with (nolock) on (

 InspectionResults.EtsbablishmentShiftXInspectTaskId

 = EstablishmentShiftXInspectTask.Id

) join Users on (

 Users.ID = InspectionResults.InspectorId

) join (

 select Description , Number

 from Areas

 where BusinessUnitId = 1

) as Areas on (

 Areas.Number

 = EstablishmentNumberOrgLevel.DistrictNumber

)

 where InspectionTasks.InspectionTaskCode in ('06A03','06A04')

) ;

 Disconnect from ph ;

 Quit;

Data and Analytic Solutions, Inc.

Page 14 of 16

Appendix 6: Find the Maximum Lengths of the Character Strings in Inspection
The following character variables came to SAS with these lengths:

• IdentifierValue 52

• PrimaryEstablishmentNumber 500

• EstablishmentName 100

• Description 100

• Inspector 101

• District 80

• InspectionResultNumber 50

 Proc sql ;

 Select

 max(length(IdentifierValue))

 label="longest IdentifierValue"

 , max(length(PrimaryEstablishmentNumber))

 label="longest PrimaryEstablishmentNumber"

 , max(length(EstablishmentName))

 label="longest EstablishmentName"

 , max(length(Description)) label="longest Description"

 , max(length(Inspector)) label="longest Inspector"

 , max(length(District)) label="longest District"

 , max(length(InspectionResultNumber))

 label="longest InspectionResultNumber"

 into

 :lenIdentifierValue

 , :lenPrimaryEstablishmentNumber

 , :lenEstablishmentName

 , :lenDescription

 , :lenInspector

 , :lenDistrict

 , :lenInspectionResultNumber

 from Inspection ;

 Quit ;

 longest

 longest Primary longest longest

 Identifier Establishment Establishment longest longest longest Inspection

 Value Number Name Description Inspector District ResultNumber

--

 38 7 55 1 25 16 14

Data and Analytic Solutions, Inc.

Page 15 of 16

Appendix 7: Shorten the Character Variables in Inspection
 /* The following step will produce the following warning for each of

 the character variables we are shortening.

 Multiple lengths were specified for the variable ... by input

 data set(s). This may cause truncation of data.

 This is exactly what we want. SAS provides no mechanism to turn off

 these warnings. We could avoid them by renaming the variables in

 the SET statement, writing their values to new variables, and

 dropping the renamed variables. But, that's a lot of code just to

 avoid the warnings. */

 Data Inspection(label="Inspections and Establishments") ;

 Length

 IdentifierValue $&lenIdentifierValue

 EstablishmentId 8

 ShiftTypeId 8

 PrimaryEstablishmentNumber $&lenPrimaryEstablishmentNumber

 EstablishmentName $&lenEstablishmentName

 DistrictNumber $2

 InspectorId 8

 Description $&lenDescription

 StartDate 8

 Inspector $&lenInspector

 District $&lenDistrict

 InspectionResultNumber $&lenInspectionResultNumber

 ;

 Set Inspection ;

 /* Remove all formats except for the StartDate. */

 Format

 IdentifierValue--Description

 Inspector--InspectionResultNumber

 ;

 /* Remove all inFormats. */

 InFormat _all_ ;

 Run ;

 %symDel

 lenIdentifierValue

 lenPrimaryEstablishmentNumber

 lenEstablishmentName

 lenDescription

 lenInspector

 lenDistrict

 lenInspectionResultNumber

 ;

Data and Analytic Solutions, Inc.

Page 16 of 16

Appendix 8: Query to Join Questionnaire and Inspection to Create the Country Dataset
Proc sql ;

 Create table Country as

 select

 Questionnaire.QuestionnaireDefID

 , Questionnaire.Name

 , Questionnaire.Title

 , Questionnaire.GrpSortOrd

 , Questionnaire.QuestionText

 , Questionnaire.QDefSortOrd

 , Questionnaire.QuestionType

 , Questionnaire.Answer

 , Questionnaire.QuestionDefID

 , Questionnaire.QuestionnaireID

 , Questionnaire.TaskConnector

 , Questionnaire.QuestionID

 , Inspection.PrimaryEstablishmentNumber

 , Inspection.EstablishmentName

 , Inspection.DistrictNumber

 , Inspection.Description

 , Inspection.StartDate

 , Inspection.Inspector

 , Inspection.District

 , Inspection.InspectionResultNumber

 from Questionnaire left join Inspection on (

 Questionnaire.TaskConnector eq Inspection.IdentifierValue

)

 order by Questionnaire.GrpSortOrd , Questionnaire.QDefSortOrd

 ;

 Drop table

 Questionnaire

 , Inspection

 ;

Quit ;

