
020-31

So, Your Data are in Excel!
Ed Heaton, Westat

Abstract
You say your customer sent you the data in an Excel workbook. Well then, I guess you'll have to
work with it. This paper will discuss some of the quirks you will find when your data are stored
in an Excel workbook. It will cover such things as

• naming conventions,
• character length issues,
• numeric precision,
• date, time, and datetime values,
• mixed data types, and
• caching.

This paper will demonstrate - through the Display Manager - SAS code and techniques to make
your life with Excel more predictable and your work less prone to error. We will use the excel
engine that is available in SAS 9.1.3 when you license SAS/ACCESS for PC Files.

Previous Work
SAS programmers have imported data from Excel for years. Common methods that use only the
basic SAS products include exporting the Excel worksheet to a tab-delimited file or an XML file
and then reading that file into SAS. Another route uses Dynamic Data Exchange (DDE) (Roper
2000, Denslow & Li 2001, Sun & Wong 2005, Feder 2005, Hall 2005). If you have the proper
licenses, you can use Open DataBase Connectivity (ODBC) (Riba 1999, Price 1999, Lee 2002,
Rucker 2003), Object Linking and Embedding for Databases (OLE DB) (Cox 1999, Lee 2002),
or Proc import (Wang & Islam 2002, Kelley 2003, Rucker 2003).

This paper looks at a LibName engine that was specifically designed to read MS Excel files. It
focuses on traps and solutions; the traps are mostly caused by Excel and solved by SAS with a
multitude of user-specified options.

Erik Tilanus looked at Excel dates (Tilanus 2004). We will look at them some more with
attention to getting them into SAS using the excel engine in the LibName statement.

The Basics of using Excel as a Database
Excel is not a relational database; it's a spreadsheet. A relational database contains tables where
each column holds the value for an attribute. Every value in that column holds the same
attribute, but for a different entity. Each row holds the attributes for a single entity. SAS expects
its datasets to be relational.

Excel has no such expectations. So, if we want to store our data in Excel and then read it with
SAS, we will have to assume the responsibility of keeping the tables relational.

Applications DevelopmentSUGI 31

This can be a problem – mostly because Excel determines the data type of data for each cell
rather than for a column. However, many people like the ease and convenience of entering their
data in Excel.

These are problems we will find when using Excel as a relational database:
• Excel sets data types automatically based on the data entered.
• Data types are set at the cell level rather than at the column level.
• A worksheet holds no more than 256 columns and 65,536 rows.
• A cell can contain no more than 32,767 characters. (Okay, this seems to be a good

thing.)
• Excel dates go back only to 1 January 1900. (Well, Excel does claim that there was a 0

January 1900!) And Excel believes that 1900 was a leap year.
• Excel has one data type (date-time) to store both dates and times of day. (This is not

really an Excel shortcoming; it's just not the SAS standard.)
• Excel puts a dollar sign at the end of its worksheet name. (Again, this is simply an

annoyance from the SAS perspective.)

Connecting to your Excel Workbook through a LibName Statement
You can connect to a Microsoft Excel workbook – version 5, 95, 97, 2000, or 2002 – with code
similar to the following. (Note: items in italics will vary for your situation.)

LibName test excel "\\path\fileName.xls" ;

In fact, you don't even need to specify the engine.

LibName test "\\path\fileName.xls" ;

Suppose we have an Excel file called Demo.xls in the H:\ExcelToSas folder. Then…

LibName xlsLib "H:\ExcelToSas\Demo.xls" ;

will create a libref to the workbook. Then I will see a SAS library called Xlslib in SAS
Explorer. This icon will have a little globe in the lower right-hand corner to tell us that
it's not really a library of SAS datasets.

Names that aren't SASsy
SAS names can contain at most 32 characters and only letters, digits, and underscores.
Furthermore, they cannot start with a digit. Microsoft Excel does not have these restrictions. If
you want to read tables that have names that don't conform to the SAS standard you must use the
validVarName=any System Option in conjunction with SAS name literals. Now, Excel
worksheet names end with a dollar sign. You don't see the dollar sign in Excel; but it's there.
So, we need to submit the Options statement as follows.

Options validVarName=any ;

Applications DevelopmentSUGI 31

Then we must use a name literal to refer to the worksheet. Name literals are quoted and
followed immediately by the letter en (n) as below. Do not put a space between the ending
quotation mark and the letter.

Proc print data=xlsLib."Sheet1$"n ;
Run ;

SAS name literals specify unconventional names for both datasets
(tables) and variables (columns). You are still limited to 32
characters in the name.

If your worksheet name contains spaces, Microsoft Excel will wrap
it in single-quotes. This should cause no problem if you use double-
quotes in your name literal.

Proc print data=xlsLib."'Famous People$'"n ;
Run ;

If you don't want to use name literals, you can add named ranges to your Excel workbook and
use SAS-compliant
names for these named
ranges. People – in
this example – is a
named range. We k
it's a named range
because it doesn't end
with a dollar sign. You
can add a named range
to your Excel w
by selecting all of the
cells containing
data – including the
column headers – and then pressing the

now

orkbook

 your

Ctrl and F3 keys at the same time. You will get a
window that looks like the following.

We already have one named range
called People. The content of the
cell at the top-left corner of the
selected range is in the name field
as a suggestion for the name of this
range. To add the selected range,
simply type a name – replacing
column1 – and press the Enter
key. Let's call this named range
foo. Now we don't need the

Applications DevelopmentSUGI 31

validVarName=any option to refer to the dataset.

Proc print data=xlsLib.foo ;
Run ;

We can create named ranges in Excel that are composed of ranges that are not contiguous.
However, the excel
engine will not recognize
a fragmented named
range.

Sheet1 of Demo.xls has
three columns of data.
The first row contains
column headers and some
of these column names d
not conform to SAS
standards. Without the

o

validVarName=any
System Option, SAS will

automatically convert the names to something that conforms to the SAS standard.

If we right-click on the foo dataset in SAS Explorer and select View Columns, we see that the
column names have been changed – underscores were substituted for blanks. This is because we
do not have validVarName=any in place.

We also see that the
MS Excel names
are preserved as
variable labels. We
can override this
feature by
specifying the
dbSasLabel=none option on the LibName statement. Then we will get no variable labels.

LibName xlsLib "H:\ExcelToSas\Demo.xls" dbSasLabel=none ;

Applications DevelopmentSUGI 31

If you want to strip the variable labels off for just one worksheet in just one SAS step, you can
do that with the dbSasLabel=none dataset option.

Proc contents data=xlsLib.foo(dbSasLabel=none) ;
Run ;

If your data start in the first row of the worksheet, you will need to tell SAS as follows.
Otherwise, your first row of data will be missing.

LibName xlsLib "H:\ExcelToSas\Demo.xls" header=no ;

When you have no column headers, SAS uses F1, F2, F3, etc. for the variable names. And yes,
by default SAS will add F1, F2, F3, etc. for variable labels unless we specify
dbSasLabel=none.

If you use the header=no option in the LibName statement, it applies to every worksheet in
the Excel workbook. There seems to be no dataset option to specify no header row.

Columns with Both Numeric and Character Data
If we look at Sheet1$, we see that some values are missing. In the Excel worksheet, the second
data value in the second column contains a character string – six – and SAS doesn't allow a
single variable to be both numeric and
text. So, SAS threw the character string
away. Similarly, the first data value in the
third column is the number 9 – which is
not text – so SAS threw it away.

How does SAS know which data type to
retain when reading a column of Excel
data? It uses the Microsoft Jet engine
which scans the first eight rows of data
and whichever data type is most common
prevails. If there is a tie, Microsoft Jet makes the column numeric and throws away the character
data.

For most work, we don't want SAS to throw away our data. Since we can't put letters in numeric
fields, we need to convert the numbers to digits and bring in the whole column as text. SAS
allows this with the mixed=yes option in the LibName statement.

LibName xlsLib "H:\ExcelToSas\Demo.xls" mixed=yes ;

However, if the first eight rows in a
column are all numbers, Microsoft Jet will
make the column numeric and
mixed=yes will not apply.

You can force the data type to character as
you use the data with the dbSasType=
dataset option. Just like other dataset

Applications DevelopmentSUGI 31

options, this only changes the data type for the duration of the step. Let's see how this works to
force column1 to a 1-byte character variable.

Proc contents
 data=xlsLib."Sheet1$"n(dbSasType=(column1=char1))
;
Run ;

Here's the output.
The CONTENTS Procedure

Data Set Name XLSLIB.'Sheet1$'n Observations .
Member Type DATA Variables 3
Engine EXCEL Indexes 0
Created . Observation Length 0
Last Modified . Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation Default
Encoding Default

 Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

2 The_second_column Char 3 $3. $3. The second column
1 column1 Char 1 $1. $1. column1
3 column_3 Char 1 $1. $1. column 3

Unfortunately, this will not help us for mixed columns where the first eight rows contain only
numbers. The problem is that the data come to SAS with the character data already stripped off.
So, even though we convert the numbers to characters, the original character data are already
gone.

The solution to this problem is to scan more than the first eight rows. We don't have a SAS
solution; this involves the Windows registry. If you are comfortable working with the Windows
registry, here's the process.

1. Back-up the Windows registry!

2. Find HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Jet\4.0\Engines\Excel.

3. Double click on TypeGuessRows.

4. Change the value to 0. (16,384 rows are scanned when the value is 0.)

If you don't know how to get to the Windows registry you shouldn't be doing this.

Applications DevelopmentSUGI 31

Special Missing Values

Suppose your worksheet has a column with mostly
numbers but some of the cells have a letter that
represents one of the SAS numeric missing values. We
can deal with this quite nicely now that we've changed
the settings for Microsoft Jet in the Windows registry.

LibName xlsLib "H:\ExcelToSas\Demo.xls" mixed=yes ;
Missing M ;
Data Sheet3(drop=_:) ;
 Set xls."Sheet3$"n(reName=(x=_x y=_y)) ;
 x = input(_x , best.) ;
 y = input(_y , best.) ;
Run ;
LibName xls clear ;

Long Character Values
By default, the excel engine will scan each column of data to find the longest character field in
the column and then set the character variable to that length in SAS – unless the length of the
longest character field is greater than 1024 characters! By default, the excel engine will create
no character variables longer than 1024 characters. This can be changed using the
dbMax_text=32767 option in the LibName satatement. (See the next page for the output.)

LibName xlsLib "H:\ExcelToSas\Demo.xls" dbMax_text=32767 ;
Proc contents data=xls.People varNum ;
Run ;

Applications DevelopmentSUGI 31

 Variables in Creation Order

Variable Type Len Format Informat Label

1 LastName Char 10 $10. $10. LastName
2 FirstName Char 16 $16. $16. FirstName
3 Title Char 40 $40. $40. Title
4 Date Num 8 Date
5 Text Char 5456 $5456. $5456. Text

It doesn't matter how large you set the dbMax_text= option – only that it is large enough. The
excel engine will still scan the character columns and set the variable lengths to the longest
occurrence of the data.

Numeric Precision
When you use the mixed-yes option in the LibName statement, any numbers that come to
SAS as character strings will have eleven decimal digits of precision. That is,

• 0.1234567890123456789 in Excel will become "0.12345678901" in SAS,

• 12345678901234567890 in Excel will become "1.2345678901e+019" in SAS,

• 123.4567890123456789 in Excel will become "123.45678901" in SAS, and

• 123456789.0123456789 in Excel will become "123456789.01" in SAS.

Microsoft Excel displays 15 significant digits with its numbers. If stores the numbers full IEEE
double-byte precision just as SAS does with its 8-byte numbers. However, you will not see the
full precision for numbers larger than 1,000,000,000,000,000.

Date Value Anomalies between SAS and Excel
Excel dates are represented by positive integers from 1 through 65,380 that represent dates from
1/1/1900 through 12/31/2078. Since SAS dates are integers from -138,061 through 6,589,335
that represent dates from 1/1/1582 through
12/31/20000, the excel engine has no
problem importing Excel dates. (Problems
might occur when you try to move SAS
datasets to Excel.) However, your Excel
worksheet might have text cells that look like
they have an Excel date, but don't. Consider
this Excel worksheet.

Applications DevelopmentSUGI 31

The value in cell A2 looks like an Excel date, but it isn't, it's a text string. Excel dates don't go
back to 1732. So, this cell will show up as
a missing value if we don't have
mixed=yes in our LibName statement.
To make sure the values come to SAS with
no problem, also use the
stringDates=yes option. With these
options, the data type for the entire date
column will be character when we look at i
from SAS. So, we will probably want to

use the

t

input() function to convert this to a SAS date.

LibName xlsLib "H:\ExcelToSas\Demo.xls"
 mixed=yes
 stringDates=yes
;
Data Sheet2(drop=_DateVar) ;
 Format DateVar date9. ;
 Set xlsLib."Sheet2$"n(reName=(DateVar=_DateVar)) ;
 DateVar = input(_DateVar , mmddyy10.) ;
Run ;
LibName xlsLib clear ;

Now, what happened to our times? The time in cell B2 is represented in Excel as 0.9361111 but
it gets to SAS as -21,915.06389. Then SAS applied the date9. format to the variable. This
isn't what we want at all. By default, a column of time values will be converted to a value that is
not correct as a SAS date, a SAS time, or a SAS datetime! SAS provides a LibName option to
fix this problem.

LibName xlsLib "H:\ExcelToSas\Demo.xls"
 mixed=yes
 stringDates=yes
 scanTime=yes
;

With scanType=yes, SAS scans a
column and – if it contains only time values
– converts the values correctly (The value
from B2 becomes 80,880.) and assigns the
time8. format. Now we get the
following when we look at the data from
SAS.

SAS converts Excel's datetime fields to
SAS dates and gives them a date9.
format. We can correct this when we use

Applications DevelopmentSUGI 31

the dataset with the dbSasType=() dataset option to tell SAS to read DateTimeVar as a
datetime variable.

We need to import this data into SAS because of the different techniques used for the DateVar
and TimeVar columns.

LibName xlsLib ".\Demo.xls"
 mixed=yes
 stringDates=yes
 scanTime=yes
;
Data Sheet2(drop=_DateVar) ;
 Format DateVar date9. ;
 Set xlsLib."Sheet2$"n(
 reName=(DateVar=_DateVar)
 dbSasType=(DateTimeVar=dateTime)
) ;
 DateVar = input(_DateVar , mmddyy10.) ;
Run ;
LibName xlsLib clear ;

Now, this looks much better. The dates are
SAS dates, the times are SAS times, and the
datetime values are SAS datetime values.

Valid data types for the dbSasType=()
dataset option are numeric, dateTime,
date, time, and char1, char2, char3,
… where 1, 2, and 3 are the lengths of the
character variables.

Applications DevelopmentSUGI 31

Access to the Excel Workbook
You cannot open an Excel workbook that is linked to SAS
through an active libRef using the excel engine. SAS has
exclusive rights to the file. If you try, you will get this
message.

Suppose you or someone else has an Excel workbook open in
the Excel application. If you access it from SAS with a
LibName statement using the excel engine, SAS will c
cached file in read-only mode. You can close the workbook, but the access will still be re
only until you clear the libRef and rerun the

ache the workbook file and open that
ad-

xcel file

Conclusions
 that became available with SAS 9 has improved the power and flexibility of

f

ur Excel file if someone has it open, be diligent about clearing your

• istry set to instruct Microsoft Jet to scan all of the rows

• ame statement as a standard practice. Sure,

• y setting it

 and you

• roperly

LibName statement. If someone has the E
open when you connect to it, they can make changes and even save the changes, but those
changes will not be visible to SAS because SAS is reading the cached file. If you clear the libref
and then resubmit the LibName statement, the changes will then be visible in SAS.

The excel engine
LibName access to Microsoft Excel data. However, it will not work miracles. If your data in
Excel are not in good order, you will still have a lot of handwork to do in SAS. Here are some o
my ideas for best practices.

• Since SAS caches yo
libref as soon as it's not needed. If you need it again, resubmit the LibName statement
and you will get the latest data.

Always have your Windows Reg
when guessing the data type. It really doesn't take that long; remember that an Excel
table contains no more than 65,536 rows.

Use the mixed=yes option for the LibN
there may be times when you don't want that, but usually it will protect you.

If your Excel file came from a customer, preserve the timestamp on the file b
to read only from Windows Explorer and using things like validVarName=any with
named literals. That way, there can be no question about whether you changed
something in the data. Otherwise, you can create named ranges in the Excel file
can change the data types of problem cells to make your SAS code cleaner.

Be especially wary of time and datetime values, they will not be converted p
without special attention.

Applications DevelopmentSUGI 31

Acknowledgments and References
Jennifer Bjurstrom of SAS Technical Support supplied the directions to modify the Windows
Registry key that instructs Microsoft Jet on how many rows of Excel data to scan when
determining the data type.

Mike Rhoads of Westat helped with editing, suggestions, critique, and encouragement.

SN-006123, Importing Excel file into SAS can result in missing data. SAS Institute. 9/28/2004.

Cox, T. What’s Up with OLE DB? SUGI24: SAS Users Group International Conference, 136.
1999.

Denslow, R. & Y. Li. Using DDE with Microsoft Excel and SAS to Collect Data from Hundreds
of Users. SUGI26: SAS Users Group International Conference, 29-26. 2001.

Feder, S. Reporting and Interacting with Excel® spreadsheets with ODS® and DDE. SUGI30:
SAS Users Group International Conference, 026-30. 2005.

Hall, D. Using an Excel Spreadsheet with PC SAS®, no Gymnastics required! SUGI30: SAS
Users Group International Conference, 041-30. 2005.

Kelley, F. So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by
the Hundreds. SUGI28: SAS Users Group International Conference, 74-28. 2003.

Lee, K. Accessing MICROSOFT EXCEL and MICROSOFT ACCESS Through the Use of a
Simple Libname Statement. SUGI27: SAS Users Group International Conference, 25-27.
2002.

Price, J. An Update on SAS® and ODBC. SUGI24: SAS Users Group International Conference,
296. 1999.

Riba, D. More Windows to the Outside World: Configuring and Using ODBC in Version 7 of
the SAS® System. SUGI24: SAS Users Group International Conference, 293. 1999.

Roper, C. Using SAS and DDE to Execute VBA macros in Microsoft Excel. SUGI25: SAS
Users Group International Conference, 98-25. 2000.

Rucker, David. Not All Fish Eat Worms: A SAS® Programmer’s Guide to MS Excel and Other
Fish Stories. SUGI27: SAS Users Group International Conference, 250-28. 2003.

Sun, H. and C. Wong. A Macro for Importing Multiple Excel Worksheets into SAS® Data Sets.
SUGI30: SAS Users Group International Conference, 040-30. 2005.

Tilanus, E. Dating SAS® and MS Excel. SUGI29: SAS Users Group International Conference,
068-29. 2004.

Wang, D. and M. Islam. A New User’s Journey in Using PROC IMPORT and ODS: An
Application in the Electricity Market. SUGI27: SAS Users Group International Conference,
122-27. 2002.

Applications DevelopmentSUGI 31

Disclaimer
The content of this paper is the work of the author and does not necessarily represent the
opinions, recommendations, or practices of Westat.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective
companies.

Contact Information
Your comments and questions are valued and encouraged. Contact the author at:

Edward Heaton
Westat
1650 Research Boulevard
Rockville, MD 20850-3195
Phone: (301) 610-4818
Email: EdHeaton@Westat.com
URL: http://www.westat.com

Applications DevelopmentSUGI 31

mailto:EdHeaton@Westat.com
http://www.westat.com/

	SUGI 31 Proceedings Table of Contents

