Optimizing an Overly Complex SQL Query
A Data and Analytic Solution (DAS) client routinely ran an essential production job that started with a query to retrieve data from an SQL Server®[footnoteRef:1] database.[footnoteRef:2] That query was explicitly[footnoteRef:3] passed from SAS®[footnoteRef:4] to the RDBMS[footnoteRef:5] and ran in 3 hours and 24 minutes[footnoteRef:6] to produce a SAS® dataset named Country. It joined 20 tables that ranged in size from three rows to nine million rows. An outer series of joins combined data from 11 tables and a nested join combined data from the other nine tables. The optimization described in this paper of the complex SQL query reduced the run time to less than eight minutes – a 95% efficiency gain. [1: SQL Server is a registered trademark of Microsoft Corporation.] [2: See Appendix 1.] [3: Explicit SQL pass-through passes database-specific SQL untouched to the database.] [4: SAS is a registered trademark of SAS Institute, Inc. in the USA and other countries.] [5: A Relational Database Management System (RDBMS) is a software application to manage a collection of relations. Informally, each relation represents a table of values – each row represents a real-world entity and each column represents a common attribute for each of those entities. The relational model was introduced by Ted Codd of IBM Research in 1970.] [6: The program used 3 hours and 59 minutes of CPU time on the multiple-CPU Windows Server.]

The SQL language provides a high-level declarative interface, so the user only specifies what the result is to be, leaving the actual optimization and decisions on how to execute the query to the RDBMS.[footnoteRef:7] The query optimizer attempts to determine the most efficient way to execute a query. It considers possible query plans for a given query and attempts to determine which of those plans will be the most efficient. This set of query plans is formed by examining the possible access paths[footnoteRef:8] and join[footnoteRef:9] techniques. [7: Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database Systems, 3rd Edition. Addison-Wesley, 2000. Page 244.] [8: Access paths include primary index access, secondary index access, and full file scan.] [9: Relational table join techniques include merge join, hash join, and product join.]

Transact-SQL[footnoteRef:10] is central to using Microsoft™ SQL Server®. Its query optimizer will develop at most 256 plans and picks its estimation of the best plan.[footnoteRef:11] Unfortunately, the optimizer was not able to develop a plan for this join of 20 tables that was efficient. [10: Transact-SQL (T-SQL) is Microsoft's and Sybase's proprietary implementation of SQL.] [11: By comparison, DB2's optimizer will develop and evaluate up to 32,768 plans.]

The following is a detailed explanation of how DAS optimized the SQL query and reduced processing time by 95 percent. The information is both comprehensive and detailed with sufficient code examples to make the task reproducible. For further information and comments, please contact Gary McQuown at mcquown@DASconsultants.com . Additional papers may be found on our website at www.DASconsultants.com.
[bookmark: _GoBack]

Initial Evaluation
Without access to the RDBMS where the data is stored, the off-site DAS analyst provided SAS® scripts to an on-site DAS employee who returned the output for evaluation. Initially, we learned about the size of the tables and the columns in those tables.
The outer series of joins combined the following 11 tables:
· AdHocQuestionnaireDefs had about 300 rows. Only rows where
· the RootAdHocQuestionnaireDefId key was 10709 and
· the IsActive flag was set to 1
were used.
· RefAdHocQuestionnaireDefStatuses had 3 rows.
· AdHocQuestionGroupDefs had about 350 rows.
· RefAdHocQuestionnaireTypes had about 15 rows.
· AdHocQuestionDefs had about 2,600 rows.
· RefAdHocQuestionTypes had 10 rows.
· AdHocQuestionnaires had about 250,000 rows.
· AdHocQuestionnaireIdentifiers had about 250,000 rows.
· AdHocQuestions had about 3,500,000 rows.
· AdHocAnswers had about 700,000 rows.
· AdHocAnswerDefs had about 4,000 rows.
The output from this outer series of joins consisted of about 1,400,000 rows and 12 columns. If the optimizer can come up with a fairly efficient plan for the join, it should run in just a few minutes.
The nested join combined the following nine tables:
· InspectionTasks had about 130 rows. Only rows where the InspectionTaskCode was either 06A03 or 06A04 were used.
· EstablishmentTaskLists had about 5,000,000 rows.
· EstablishmentNumberOrgLevel had about 8,000 rows.
· EstablishmentShiftXInspectTask had about 9,000,000 rows.
· EstablishmentShifts had about 9,000 rows.
· RefInspectionTaskJustifications had about 30 rows.
· InspectionResults had about 8,000,000 rows.
· Users had about 12,000 rows.
· Areas had about 60 rows. Only rows where the BusinessUnitId was set to 1 were used.
The output from this nested series of joins consisted of about 18,000 rows and 12 columns. If the optimizer can come up with a fairly efficient plan for the join, it should run in less than a minute.
Both of these queries return character variables from SQL Server® varChar[footnoteRef:12] columns that are extremely long given the lengths of the character strings in these columns. These long character variables should be shortened after the download. [12: In SQL Server, the varChar data type is a variable-length, non-Unicode string data with a maximum length that can be specified from 1 through 8,000. The storage size is the actual length of the data entered + 2 bytes.]

After that evaluation, the DAS analyst estimated that a more-efficient process should be able to create the Country dataset in about 15 minutes.
Creating a Table of Questionnaire, Question, and Answer Data
First, we queried the RDBMS to create a SAS® dataset named Questionnaire. This dataset consisted of about 1.4 million rows with a foreign key named TaskConnector that would be used to link to the data from the nested query. SAS® implicitly passed the query to the RDBMS because all of the code in the SAS® SQL query could be converted to Transact-SQL. The query ran in about four minutes.
Long Character Variables
TaskConnector exists in the RDBMS as a 4000-byte varChar variable. However, SAS® has no varChar data type and the key arrives in SAS® as a 4,000 byte character string. Examination of the TaskConnector keys revealed that each consisted of either
· a nine-digit decimal integer (in about 3% of the rows) or
· a decimal integer of one to three digits followed immediately by the canonical representation of a UUID[footnoteRef:13] – with either upper-case letters or lower-case letters. [13: A universally unique identifier (UUID) is a 128-bit integer. That is, it is an integer with 2128 possible unique values. The intent is to enable distributed systems to uniquely identify information without significant central coordination. In its canonical form, a UUID is represented by 32 hexadecimal digits, displayed in five groups separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters (32 alphanumeric characters and four hyphens).]

The UUID part of the two-part TaskConnector keys sometimes used upper-case letters to represent the six largest hexadecimal digits and sometimes it used lower-case letters. While lower-case letters seem to be the standard across most applications, SQL Server® uses an upper-case standard.[footnoteRef:14] [14: SAS uses the lower-case standard for its canonical form of the UUID.]

A SAS® SQL query implicitly[footnoteRef:15] passed to the SQL Server® dataset to join the 11 tables in the outer join produced the QandA table in about 3½ minutes.[footnoteRef:16] [15: With implicit SQL pass-through (identified by the use of a LIBNAME statement pointing to the relational database) SAS will attempt to convert the SAS SQL scripts to SQL that the target database can understand.] [16: See Appendix 2.]

The SQL Server® database uses the varChar data type to allow short character strings to be stored efficiently in columns defined to allow long strings. However, SAS® does not have a varChar equivalent and those columns come to SAS® as fixed-length variables padded with blanks to the full length of the defined varChar column in SQL Server®. Thus, character strings in the QandA table were significantly longer than needed. Specifically
· Name was 50 bytes but the longest string was 29 bytes,
· Title was 100 bytes but the longest string was 19 bytes,
· QuestionText was 4,000 bytes but the longest string was 207 bytes,
· QuestionType was 20 bytes but the longest string was 15 bytes,
· Answer was 4,000 bytes but the longest string was 388 bytes, and
· TaskConnector was 4,000 bytes but the longest string was 39 characters
We can use the SAS® SQL procedure to create a series of macro variables – each with the length of the longest string found in each of these character variables. Then we can use those macro variables in a SAS® DATA step to shorten the lengths of those character variables. While we have our data in the DATA step, it would be useful to create a variable for the integer portion of the TaskConnector and another variable for the UUID portion of the TaskConnector.[footnoteRef:17] [17: See Appendix 3.]

The query that creates the six macro variables ran in about 23 seconds and the DATA step that shortened the variables ran in about 24 seconds.
Creating a Table of Inspection and Establishment Data
Let's create a dataset of inspection and establishment data – call it Inspection – by submitting the nested part of the original query as an independent query. We want to join
· InspectionTasks,
· EstablishmentTaskLists,
· EstablishmentNumberOrgLevel,
· EstablishmentShiftXInspectTask,
· EstablishmentShifts,
· RefInspectionTaskJustifications,
· InspectionResults,
· Users, and
· Areas.

SAS® will implicitly pass a query to the RDBMS if it can be converted to the query language that is used by that RDBMS. However, the InspectionResults table in the database has a column named EtsbablishmentShiftXInspectTaskId[footnoteRef:18] and that name is 33 characters long while SAS® only allows column names up to 32 characters. So, we must explicitly pass a Transact-SQL query to SQL Server®. [18: Note: The name of the variable is probably a typo and should have been EstablishmentShiftXInspectTaskId which is 32 characters long.]

This query ran in about three seconds. It returned about 18 thousand rows and 12 columns.
Long Character Variables
PrimaryEstablishmentNumber came from SQL Server® as a 500-byte character variable but the longest string returned was seven bytes. Other varChar values arrived longer then prudent for SAS®. We shortened them to lengths suggested by the data.
Creating the Country Dataset
Finally, we need to join the SAS® Questionnaire dataset with the SAS® Inspection dataset by matching the TaskConnector from Questionnaire with the IdentifierValue from Inspection. We will sort the output Country dataset on the GrpSortOrd values and then on the QDefSortOrd values within each level of GrpSortOrd.[footnoteRef:19] This query ran in about 20 seconds to produce 1.4 million rows and 20 columns. [19: See Appendix 7.]

Upper-Case and Lower-Case Canonical Representation of UUIDs
Almost 800 thousand of the UUID values in the TaskConnector column had lower-case letters for the larger hexadecimal digits. These represented about 10 thousand distinct values. In all, we had about 18 thousand distinct case-insensitive values in the UUID section of the TaskConnector column.
We have about four hundred distinct lower-case TaskConnector values that match to IdentifierValue using a case-insensitive join.
The original query concatenates the Id columns from the InspectionTasks and EstablishmentShiftXInspectTask tables in a nested join using the following code.
select rtrim(it.Id) + rtrim(esit.Id) as IdentifierValue
Then the job joins that nested join (alias: a) with IdentifierValue values from the AdHocQuestionnaireIdentifiers table.
The Id column in the InspectionTasks table is an integer and the Id column in the EstablishmentShiftXInspectTask table is a uniqueIdentifier[footnoteRef:20] (UUID) – a 16-byte integer. [20: SQL Server's uniqueIdentifier data type is a UUID.]

The rTrim()[footnoteRef:21] function converted the keys to character strings. No problem with the Id from the InspectionTasks table because the result is all decimal digits. However, when rTrim() cast the uniqueIdentifier value to a character string, that string had upper-case letters representing the larger hexadecimal digits (e.g.: B9CA9D3E-7EFC-E111-93FF-005056945884).[footnoteRef:22] [21: The Transact-SQL rTrim() function removes trailing spaces from a character argument.] [22: SAS has a function called uuidGen() which generates a UUID and returns it as either a string of hexadecimal digits in groups separated by hyphens (e.g.: b9ca9d3e-7efc-e111-93ff-005056945884) or as a 16-byte binary string. Notice that the SAS uses lower-case letters to represent the larger hexadecimal digits!]

The problem is that some of the IdentifierValue values in AdHocQuestionnaireIdentifiers table have upper-case letters and some have lower-case letters! When used as a key for the equi-join of the tables, case matters!
on a.IdentifierValue = AHQI.IdentifierValue
Perhaps we should add the following line to the DATA step that shortens the character variables in Questionnaire.[footnoteRef:23] [23: The SAS upCase() function converts all lower-case ASCII letters (including those with diacritical marks) to upper-case.]

TaskConnector = upCase(TaskConnector) ;
Conclusion
The original query to download the Country data ran on the 10th of December in about 3½ hours and downloaded 1,178,499 rows. While this was only a single step, the query was simply too complex for the SQL Server® query optimizer.
While our solution increases this single step to seven steps, the total run time is only about 5½ minutes to return 1,450,155 rows.[footnoteRef:24] That's about 50 times faster! [24: The number of returned rows increased from the initial run in December because rows were added to the tables that the task queried.]

Data and Analytic Solutions, Inc.[image: DAS_newlogo080415-A]

Page 2 of 16
Appendix 1: Original Query
Create table work.country as
 select *
 from connection to ph (
 select
 AHQRD.Id as QuestionnaireDefID
 , AHQRD.Name
 , AHQGD.Title
 , AHQGD.SortOrder as GrpSortOrd
 , AHQD.QuestionText
 , AHQD.SortOrder QDefSortOrd
 , RAHQT.Code as QuestionType
 , case when AHA.AnswerText is not null then AHA.AnswerText else AHAD.Label end as Answer
 , AHQD.Id as QuestionDefID
 , AHQR.Id as QuestionnaireID
 , AHQI.IdentifierValue as TaskConnector
 , AHQ.Id as QuestionID
 , a.PrimaryEstablishmentNumber
 , a.EstablishmentName
 , a.DistrictNumber
 , a.Description
 , a.startdate
 , a.inspector
 , a.District
 , a.inspectionresultnumber
 from
 AdHocQuestionnaireDefs AHQRD
 join RefAdHocQuestionnaireDefStatuses RADHQDS
 on RADHQDS.Id = AHQRD.AdHocQuestionnaireDefStatusId
 join AdHocQuestionGroupDefs AHQGD on AHQGD.AdHocQuestionnaireDefId = AHQRD.Id
 join RefAdHocQuestionnaireTypes RAHQRT on RAHQRT.Id = AHQRD.AdHocQuestionnaireTypeId
 join AdHocQuestionDefs AHQD on AHQD.AdHocQuestionGroupDefId = AHQGD.Id
 join RefAdHocQuestionTypes RAHQT on RAHQT.Id = AHQD.AdHocQuestionTypeId
 join AdHocQuestionnaires AHQR on AHQR.AdHocQuestionnaireDefId = AHQRD.Id
 join AdHocQuestionnaireIdentifiers AHQI on AHQI.AdHocQuestionnaireId = AHQR.Id
 join AdHocQuestions AHQ
 on AHQ.AdHocQuestionDefId = AHQD.Id and AHQ.AdHocQuestionnaireId = AHQR.Id
 left join AdHocAnswers AHA on AHA.AdHocQuestionId = AHQ.Id
 left join AdHocAnswerDefs AHAD on AHA.AdHocAnswerDefId = AHAD.Id

 left join (
 select
 rtrim(it.Id) + rtrim(esit.Id) as IdentifierValue
 , etl.EstablishmentId
 , es.ShiftTypeId
 , eno.PrimaryEstablishmentNumber
 , eno.EstablishmentName
 , eno.DistrictNumber
 , esit.InspectorId
 , ritj.Description
 , convert(date,ir.StartDate) as StartDate
 , u.FirstName + ' ' + u.LastName as Inspector
 , a.Description as District
 , ir.inspectionresultnumber
 from
 InspectionTasks it
 join EstablishmentTaskLists etl on etl.InspectionTaskId = it.Id
 join EstablishmentNumberOrgLevel eno on eno.EstablishmentID = etl.EstablishmentId
 join EstablishmentShiftXInspectTask esit on esit.EstablishmentTaskListId = etl.Id
 left join EstablishmentShifts es on es.Id = esit.EstablishmentShiftId
 left join RefInspectionTaskJustifications ritj
 on ritj.Id = esit.InspectionTaskJustificationId
 join InspectionResults ir with (nolock)
 on ir.EtsbablishmentShiftXInspectTaskId = esit.Id
 join Users u on u.ID = ir.InspectorId
 join (
 select *
 from Areas
 where businessunitid = 1
) a on a.Number = eno.DistrictNumber
 where it.InspectionTaskCode in ('06A03','06A04')
) a on a.IdentifierValue = AHQI.IdentifierValue
 where AHQRD.RootAdHocQuestionnaireDefId = 10709 and AHQRD.IsActive = 1
 order by AHQGD.SortOrder, AHQD.SortOrder
)
;

Appendix 2: Query to Create the Questionnaire Dataset
%let qxId = 10709 ;
%let isActive = 1 ;
...
LibName ph
 oledb
 udl_file="C:\Users\Public\Documents\OLEDB\PHISPROD.udl"
 dbmax_text=32767
 dbSasLabel=none
;
Proc sql ;
 Create table Questionnaire as
 select
 AdHocQuestionnaireDefs.Id as QuestionnaireDefID
 , AdHocQuestionnaireDefs.Name
 , AdHocQuestionGroupDefs.Title
 , AdHocQuestionGroupDefs.SortOrder as GrpSortOrd
 , AdHocQuestionDefs.QuestionText
 , AdHocQuestionDefs.SortOrder as QDefSortOrd
 , RefAdHocQuestionTypes.Code as QuestionType
 , case
 when AdHocAnswers.AnswerText is null
 then AdHocAnswerDefs.Label
 else AdHocAnswers.AnswerText
 end as Answer
 , AdHocQuestionDefs.Id as QuestionDefID
 , AdHocQuestionnaires.Id as QuestionnaireID
 , AdHocQuestionnaireIdentifiers.IdentifierValue
 as TaskConnector
 , AdHocQuestions.Id as QuestionISD

 from
 /* The RefAdHocQuestionnaireDefStatuses and
 RefAdHocQuestionnaireTypes tables contribute no columns
 to the output dataset. */
 (select
 Id
 , Name
 , AdHocQuestionnaireDefStatusId
 , AdHocQuestionnaireTypeId
 from ph.AdHocQuestionnaireDefs
 where
 (RootAdHocQuestionnaireDefId eq &qxId)
 & (IsActive eq &isActive)
) as AdHocQuestionnaireDefs join ph.RefAdHocQuestionnaireDefStatuses on (
 RefAdHocQuestionnaireDefStatuses.Id
 eq AdHocQuestionnaireDefs.AdHocQuestionnaireDefStatusId
) join ph.AdHocQuestionGroupDefs on (
 AdHocQuestionGroupDefs.AdHocQuestionnaireDefId
 eq AdHocQuestionnaireDefs.Id
) join ph.RefAdHocQuestionnaireTypes on (
 RefAdHocQuestionnaireTypes.Id
 eq AdHocQuestionnaireDefs.AdHocQuestionnaireTypeId
) join ph.AdHocQuestionDefs on (
 AdHocQuestionDefs.AdHocQuestionGroupDefId
 eq AdHocQuestionGroupDefs.Id
) join ph.RefAdHocQuestionTypes on (
 RefAdHocQuestionTypes.Id
 eq AdHocQuestionDefs.AdHocQuestionTypeId
) join ph.AdHocQuestionnaires on (
 AdHocQuestionnaires.AdHocQuestionnaireDefId
 eq AdHocQuestionnaireDefs.Id
) join ph.AdHocQuestionnaireIdentifiers on (
 AdHocQuestionnaireIdentifiers.AdHocQuestionnaireId
 eq AdHocQuestionnaires.Id
) join ph.AdHocQuestions on (
 (AdHocQuestions.AdHocQuestionDefId eq AdHocQuestionDefs.Id)
 & (AdHocQuestions.AdHocQuestionnaireId eq AdHocQuestionnaires.Id)
) left join ph.AdHocAnswers on (
 AdHocAnswers.AdHocQuestionId eq AdHocQuestions.Id
) left join ph.AdHocAnswerDefs as aDef on (
 AdHocAnswers.AdHocAnswerDefId eq AdHocAnswerDefs.Id
)
 order by
 AdHocQuestionGroupDefs.SortOrder
 , AdHocQuestionDefs.SortOrder
 ;
Quit ;
LibName ph clear ;

Appendix 3: Find the Maximum Lengths of the Character Strings in Questionnaire
The following character variables came to SAS with these lengths:
· Name	50
· Title	100
· QuestionText	4,000
· QuestionType	20
· Answer	4,000
· TaskConnector	4,000
Proc sql ;
 Select
 max(length(Name)) label="longest Name"
 , max(length(Title)) label="longest Title"
 , max(length(QuestionText)) label="longest QuestionText"
 , max(length(QuestionType)) label="longest QuestionType"
 , max(length(Answer)) label="longest Answer"
 , max(length(TaskConnector)) label="longest TaskConnector"
 into
 :lenName
 , :lenTitle
 , :lenQuestionText
 , :lenQuestionType
 , :lenAnswer
 , :lenTaskConnector
 from QandA ;
Quit ;
 longest
 longest longest longest longest longest Task
 Name Title QuestionText QuestionType Answer Connector
--
 29 19 207 15 388 39

Appendix 4: Shorten the Character Variables in Questionnaire
 /* The following step will produce the following warning for each of the character
 variables we are shortening.
 Multiple lengths were specified for the variable ... by input data set(s).
 This may cause truncation of data.
 This is exactly what we want. SAS provides no mechanism to turn off these
 warnings. We could avoid them by renaming the variables in the SET statement,
 writing their values to new variables, and dropping the renamed variables. But,
 that's a lot of code just to avoid the warnings. */
 Data Questionnaire(label="Questionnaires, Questions, and Answers") ;
 Length
 QuestionnaireDefID 8
 Name $&lenName
 Title $&lenTitle
 GrpSortOrd 8
 QuestionText $&lenQuestionText
 QDefSortOrd 8
 QuestionType $&lenQuestionType
 Answer $&lenAnswer
 QuestionDefID 8
 QuestionnaireID 8
 TaskConnector $&lenTaskConnector
 QuestionID 8
 ;
 Set QandA ;
 /* The UUID part of the TaskConnector expresses the larger hexadecimal digits
 sometimes as upper-case letters and sometimes as lower-case letters. We need
 to standardize this before we attempt to merge the QandA table with the
 Inspection table – which will have all the UUID values expressed with upper-
 case letters. */
/* TaskConnector = upCase(TaskConnector) ;*/
 Run ;
 %symDel
 lenName
 lenTitle
 lenQuestionText
 lenQuestionType
 lenAnswer
 lenTaskConnector
 ;

Appendix 5: Explicit Pass-Through Query to Create the Inspection Dataset
 /* The included file contains a script to create the &ph_connect macro
 variable. */
 %include "E:\SAS JobRunEnv\DatabaseExec\Autoexec_Svr1.sas";
 Proc sql &sqlOptions ;
 &ph_connect ;
 Create table Inspection as select * from connection to ph (
 select
 rTrim(InspectionTasks.Id) + rTrim(
 EstablishmentShiftXInspectTask.Id
) as IdentifierValue
 , EstablishmentTaskLists.EstablishmentId
 , EstablishmentShifts.ShiftTypeId
 , EstablishmentNumberOrgLevel.PrimaryEstablishmentNumber
 , EstablishmentNumberOrgLevel.EstablishmentName
 , EstablishmentNumberOrgLevel.DistrictNumber
 , EstablishmentShiftXInspectTask.InspectorId
 , RefInspectionTaskJustifications.Description
 , convert(date,InspectionResults.StartDate) as StartDate
 , Users.FirstName + ' ' + Users.LastName as Inspector
 , Areas.Description as District
 , InspectionResults.inspectionresultnumber
 from
 InspectionTasks join EstablishmentTaskLists on (
 EstablishmentTaskLists.InspectionTaskId
 = InspectionTasks.Id
) join EstablishmentNumberOrgLevel on (
 EstablishmentNumberOrgLevel.EstablishmentID
 = EstablishmentTaskLists.EstablishmentId
) join EstablishmentShiftXInspectTask on (
 EstablishmentShiftXInspectTask.EstablishmentTaskListId
 = EstablishmentTaskLists.Id
) left join EstablishmentShifts on (
 EstablishmentShifts.Id
 = EstablishmentShiftXInspectTask.EstablishmentShiftId
) left join RefInspectionTaskJustifications on (
 RefInspectionTaskJustifications.Id
 = EstablishmentShiftXInspectTask.InspectionTaskJustificationId
) join InspectionResults with (nolock) on (
 InspectionResults.EtsbablishmentShiftXInspectTaskId
 = EstablishmentShiftXInspectTask.Id
) join Users on (
 Users.ID = InspectionResults.InspectorId
) join (
 select Description , Number
 from Areas
 where BusinessUnitId = 1
) as Areas on (
 Areas.Number
 = EstablishmentNumberOrgLevel.DistrictNumber
)
 where InspectionTasks.InspectionTaskCode in ('06A03','06A04')
) ;
 Disconnect from ph ;
 Quit;

Appendix 6: Find the Maximum Lengths of the Character Strings in Inspection
The following character variables came to SAS with these lengths:
· IdentifierValue	52
· PrimaryEstablishmentNumber	500
· EstablishmentName	100
· Description	100
· Inspector	101
· District	80
· InspectionResultNumber	50
 Proc sql ;
 Select
 max(length(IdentifierValue))
 label="longest IdentifierValue"
 , max(length(PrimaryEstablishmentNumber))
 label="longest PrimaryEstablishmentNumber"
 , max(length(EstablishmentName))
 label="longest EstablishmentName"
 , max(length(Description)) label="longest Description"
 , max(length(Inspector)) label="longest Inspector"
 , max(length(District)) label="longest District"
 , max(length(InspectionResultNumber))
 label="longest InspectionResultNumber"
 into
 :lenIdentifierValue
 , :lenPrimaryEstablishmentNumber
 , :lenEstablishmentName
 , :lenDescription
 , :lenInspector
 , :lenDistrict
 , :lenInspectionResultNumber
 from Inspection ;
 Quit ;
 longest
 longest Primary longest longest
 Identifier Establishment Establishment longest longest longest Inspection
 Value Number Name Description Inspector District ResultNumber
--
 38 7 55 1 25 16 14

Appendix 7: Shorten the Character Variables in Inspection
 /* The following step will produce the following warning for each of
 the character variables we are shortening.
 Multiple lengths were specified for the variable ... by input
 data set(s). This may cause truncation of data.
 This is exactly what we want. SAS provides no mechanism to turn off
 these warnings. We could avoid them by renaming the variables in
 the SET statement, writing their values to new variables, and
 dropping the renamed variables. But, that's a lot of code just to
 avoid the warnings. */
 Data Inspection(label="Inspections and Establishments") ;
 Length
 IdentifierValue $&lenIdentifierValue
 EstablishmentId 8
 ShiftTypeId 8
 PrimaryEstablishmentNumber $&lenPrimaryEstablishmentNumber
 EstablishmentName $&lenEstablishmentName
 DistrictNumber $2
 InspectorId 8
 Description $&lenDescription
 StartDate 8
 Inspector $&lenInspector
 District $&lenDistrict
 InspectionResultNumber $&lenInspectionResultNumber
 ;
 Set Inspection ;
 /* Remove all formats except for the StartDate. */
 Format
 IdentifierValue--Description
 Inspector--InspectionResultNumber
 ;
 /* Remove all inFormats. */
 InFormat _all_ ;
 Run ;
 %symDel
 lenIdentifierValue
 lenPrimaryEstablishmentNumber
 lenEstablishmentName
 lenDescription
 lenInspector
 lenDistrict
 lenInspectionResultNumber
 ;

Appendix 8: Query to Join Questionnaire and Inspection to Create the Country Dataset
Proc sql ;
 Create table Country as
 select
 Questionnaire.QuestionnaireDefID
 , Questionnaire.Name
 , Questionnaire.Title
 , Questionnaire.GrpSortOrd
 , Questionnaire.QuestionText
 , Questionnaire.QDefSortOrd
 , Questionnaire.QuestionType
 , Questionnaire.Answer
 , Questionnaire.QuestionDefID
 , Questionnaire.QuestionnaireID
 , Questionnaire.TaskConnector
 , Questionnaire.QuestionID
 , Inspection.PrimaryEstablishmentNumber
 , Inspection.EstablishmentName
 , Inspection.DistrictNumber
 , Inspection.Description
 , Inspection.StartDate
 , Inspection.Inspector
 , Inspection.District
 , Inspection.InspectionResultNumber
 from Questionnaire left join Inspection on (
 Questionnaire.TaskConnector eq Inspection.IdentifierValue
)
 order by Questionnaire.GrpSortOrd , Questionnaire.QDefSortOrd
 ;
 Drop table
 Questionnaire
 , Inspection
 ;
Quit ;
image1.jpeg
—+

Knowledge Intelligenence Innovation

