
Functional Functions 
 

Gary M McQuown, Data and Analytic Solutions Inc., Fairfax, VA 
Dorothy E. Brown, Independent Consultant, Matthews, NC 

 
 

Abstract: 
 
Functions are an important aspect of data step programming that 
are often overlooked and under utilized.  Not only can functions 
be used to resolve a data step dilemma; they can be mixed and 
matched to create efficient and precise code.  The arrival of V8 
includes a number of new functions, making it even more difficult 
to stay up to date.  The following prose and examples cover many 
of the newly introduced functions as well as some unusual 
methods of using some old favorites.  
 
Introduction: 
 
SAS functions are among the most basic and commonly used 
data step tools.   A SAS function performs a computation or 
system manipulation on arguments and returns a value.  Most 
functions use arguments supplied by the user, but a few obtain 
their arguments from the operating environment.  In base SAS 
software, you can use SAS functions in DATA step programming 
statements, in a WHERE expression, in macro language 
statements, in PROC REPORT, and in Structured Query 
Language (SQL).  Some statistical procedures also use SAS 
functions.  With V8, we have over fifty official new functions and 
some minor enhancements to a few of our old favorites.  The 
following is a collection of documentation and code from various 
sources (mostly from SAS or SAS-L) intended to explain and 
promote interest in these functions.    
 
Many of the functions listed are not actually "new".  Most have 
been around on an undocumented experimental basis since late 
in the V6 series or emulate SCL function behavior.  Regardless of 
their lineage or timing, they are worth learning more about. 
 
Enhancements to PUT SCAN and QUOTE 
 
Two of the most commonly used functions are PUT and SCAN.   
PUT returns a value using a specified format.  It is often used to 
convert numeric value as a character value.  With V8, we have 
the option of specifying the alignment of the character value 
returned in addition to its format.  This saves us the chore of 
aligning the value in an additional step.  In many ways, that is 
what functions are all about: making code more efficient, concise 
and convenient.   
 
• PUT(source, format.) 
Returns a value using a specified format 
 
The new alignment specifications for PUT are: -L  for left 
alignment, -C for center alignment and –R for right alignment.   
 
   Example:    
   text = "Where does it go";     
   put text $50. -L ;   
   put text $50. -C ;  
   put text $50. -R ;  
   results =  
   Where does it go 
                  Where does it go 
                                 Where does it go  
    
• SCAN(argument,n<, delimiters>) 
Selects a given word from a character expression 
 
The SCAN function is used to select a given work from a 
character expression.  It has been modified to accept a negative  
 

value directing it to read character segments starting from the end 
of the character string rather than from the beginning.    
   Example:   
   destination = “New Orleans LA”;  
   state = scan(destination, -1);   
   results =  LA . 

 
• QUOTE(argument) 
Adds double quotation marks to a character value 
 
The third function to receive modifications is the QUOTE function.  
The QUOTE function places double quotes around a character 
value and now retains all trailing blanks.  Previous versions of this 
function removed trailing blanks.  
 
    Example:  

x='George''s'; 
y=quote(x); 
put y; 
result = "George's" 

 
The following SQL code uses quote to create a list of values.   
 

PROC SQL noprint; 
select quote( trim( string) ) into :list separated by ', ' from 
data_set; 
run; 

 
New Mathematical and Probability Functions 
 
The introduction of the new mathematical functions makes it 
easier to compute factorials, permutation, and combinations.  
 
• COMB(n, r) 
Computes the number of combinations of n elements taken r at a 
time and returns a value 
 
• CONSTANT(constant<, parameter>) 
Computes some machine and mathematical constants and 
returns a value 
 
CONSTANT allows you to pass certain mathematical values, 
some of which may be platform or environment specific.   
 

Example: 
pi = constant ('PI'); 

 
The following is a list of the constants that can be returned. 
 
Constant  'Argument'    
 
The natural base 'E'  
Euler constant 'EULER'  
Pi 'PI'  
Exact integer 'EXACTINT' <,nbytes>  
The largest double-precision number 'BIG'  
The log with respect to base of BIG 'LOGBIG' <,base>  
The square root of BIG 'SQRTBIG'  
The smallest double-precision number 'SMALL'  
The log with respect to base of SMALL 'LOGSMALL' <,base>  
The square root of SMALL 'SQRTSMALL'  
Machine precision constant 'MACEPS'  
The log with respect to base of MACEPS 'LOGMACEPS' <,base>  
The square root of MACEPS 'SQRTMACEPS' 
 



• DEVIANCE(distribution, variable, shape-parameter(s) < 
,[EPSIV]>) 

Computes the deviance and returns a value 
 
• FACT(n) 
Computes a factorial and returns a value 
 
• PERM(n<,r>) 
Computes the number of permutations of n items taken r at a time 
and returns a value 
 
• PROBBNRM(x, y, r) 
Computes a probability from the bivariate normal distribution and 
returns a value 
 
• PROBMC(distribution, q, prob, df, nparms<, parameters>) 
Computes a probability or a quintile from various distributions for 
multiple comparisons of means, and returns a value 
 
Character-String Matching Functions 
 
The following RX functions and CALL routines provide character-
string matching functionality. That is, they enable you to search 
for (and, optionally, to replace) patterns or characters in a string.     
 
• CALL RXCHANGE (rx, times, old-string<, new-string>); 
Changes one or more substrings that match a pattern 
 
• CALL RXFREE (rx); 
Frees memory allocated by other regular expression (RX) 
functions and CALL routines 
 
• CALL RXSUBSTR (rx, string, position, length, score); 
Finds the position, length, and score of a substring that matches a 
pattern 
 
• position=RXMATCH (rx, string) 
Finds the beginning of a substring that matches a pattern and 
returns a value 
 
• rx=RXPARSE(pattern-expression) 
Parses a pattern and returns a value 
 
The ability to parse strings can be useful in many different ways.  
While some use these tools to explore, clean and modify their 
data, others use the same tools to automate their processes.  The 
following example shows how a SAS log or the output from PROC 
CONTENTS can be processed to determine directory paths. 
 

Parsing a SAS Entry Name from a Line of Text  
By Jack Hamilton on SAS-L 
  
data _null_; 
 
length result $35.; 
drop rx string; 
retain rx; 
 
if _n_ = 1 then 
   rx = rxparse('` <:> <$n "." $n "." $n ".program"> <:> to =2'); 
infile cards end=end; 
input string $char80.; 
call rxchange(rx, 2, string, result); 
put result=; 
if end then 
   call rxfree(rx); 
run; 
 
data: 
0jd#abc.def.xyz.program6834efghijklmn.op.qr.program2633 
123defghijklmn.op.qr.program2633                                
hijklmn.op.qr.programsandmore   
 

results:                                 
abc.def.xyz.program                                                                        
hijklmn.op.qr.program       
hijklmn.op.qr.program       

 
Variable Information Functions 
 
The largest category of new functions supplies variable 
information.  The information returned ranges from whether or not 
the variable is in an array, is character or numeric, to the name of 
the format or informat associated with the variable and its label.  
This category is actually two complementary sets of functions that 
perform the same task but with different arguments.  The first set 
begins with the letter V and requires a variable name or array 
reference as its argument.  The second also begins with a V, but 
ends with an X and requires a character string as the argument. 
For each of the V-X functions, SAS evaluates the argument to 
determine the variable name. 
 
• VARRAY (name) 
Returns a value that indicates whether the specified name is an 
array 
 
• VARRAYX (expression) 
Returns a value that indicates whether the value of the specified 
argument is an array 
 
• VINARRAY (var) 
Returns a value that indicates whether the specified variable is a 
member of an array 
 
• VINARRAYX (expression) 
Returns a value that indicates whether the value of the specified 
argument is a member of an array 
 
VARRAY, VARRAYX, VINARRAY, VINARRAYX, VTYPE, and 
VTYPEX make determinations and return a specific value.  
VARRAY and VARRAYX determine if the specified name or 
expression is the name of an array.  VINARRAY and 
VINARRAYX are used to determine if a specified name or 
expression is a member of an array.  Both VARRAY and 
VARRAYX return a 1 if the argument is the name of an array and 
a 0 if it is not, but VARRAYX requires an expression rather than a 
name.  The same is true for VINARRAY and VINARAYX, which 
determine if the name or expression is a member of an array. 
   Example:  

an_array=varray(name);       
an_array=varrayx(expression(x)) ;  
in_array=vinarray(name); 
in_array=vinarrayx(expression(x)); 

 
• VTYPE (var) 
Returns the type (character or numeric) of the specified variable 
 
• VTYPEX (expression) 
Returns the type (character or numeric) for the value of the 
specified argument 
 
VTYPE and VTYPEX are a little different in that they return the 
letter N if the variable is numeric and the letter C if it is a character 
variable. 
    Example: 

v_type=vtype(name); 
    v_type=vtypex(expression(x)); 
 

if vtype(&varname )='N' then do; 
        /* code for numeric processing */ 
   end; 
   else do; 
       /* code for character processing */ 
end; 
 

 



The VLABEL, VLENGTH and VNAME function pairs are 
especially helpful tools when processing arrays.  VNAME and 
VNAMEX return the name of the requested variable and VLABEL 
and VLABELX return any label associated with it.  VLENGTH and 
VLENGTHX return the length at processing time. 
 
• VLABEL (var) 
Returns the label that is associated with the specified variable 
 
• VLABELX (expression) 
Returns the variable label for the value of a specified argument 
 
• VLENGTH (var) 
Returns the compile-time (allocated) size of the specified variable 
 
• VLENGTHX (expression) 
Returns the compile-time (allocated) size for the value of the 
specified argument 
 
• VNAME (var) 
Returns the name of the specified variable 
 
• VNAMEX (expression) 
Validates the value of the specified argument as a variable name 

 
data a;                                   
length x1-x3 $8;                          
label x1 = "first"                        
      x2 = "second"                       
      x3 = "third" ;                      
array x(3) x1-x3;                         
 x1 = 'abc';                              
 x2 = 'cde';                              
 x3 = '';                                 
v_name=vname(x(1));                       
v_length=vlength(x(1));                   
x_length=length(x1) ;                     
v_label=vlabel(x(3));                     
put v_name= v_label= v_length= x_length=; 
run;                                      
                                          
results:                                                                           
v_name=x1 v_label=third v_length=8 x_length=3 
 

The remaining sixteen V functions return information about the 
format or informats associated with a variable.  Because a 
separate function exists for formats and another for informats as 
well as the name or expression argument discussed earlier, we 
now have two sets of pared functions.  Their tasks are to return 
the format or informat, the format or informat name, the format or 
informat length and the format or informat decimal value for the 
given variable.   Those that are associated with formats begin with 
VFORMAT and while those associated with informats begin with 
VINFORMAT.  As with the other V Functions, those ending with 
an X must receive an expression while those that do not end in an 
X must receive a name or array reference.  
 
• VFORMAT (var) 
Returns the format that is associated with the specified variable 
 
• VFORMATD (var) 
Returns the format decimal value that is associated with the 
specified variable 
 
• VFORMATDX (expression) 
Returns the format decimal value that is associated with the value 
of the specified argument 
 
• VFORMATN (var) 
Returns the format name that is associated with the specified 
variable 
 
• VFORMATNX (expression) 

Returns the format name that is associated with the value of the 
specified argument 
 
• VFORMATW (var) 
Returns the format width that is associated with the specified 
variable 
 
• VFORMATWX (expression) 
Returns the format width that is associated with the value of the 
specified argument 
 
• VFORMATX (expression) 
Returns the format that is associated with the value of the 
specified argument 
 
• VINFORMAT (var) 
Returns the informat that is associated with the specified variable 
 
• VINFORMATD (var) 
Returns the informat decimal value that is associated with the 
specified variable 
 
• VINFORMATDX (expression) 
Returns the informat decimal value that is associated with the 
value of the specified argument 
 
• VINFORMATN (var) 
Returns the informat name that is associated with the specified 
variable 
 
• VINFORMATW (var) 
Returns the informat width that is associated with the specified 
variable 
 
• VINFORMATNX (expression) 
Returns the informat name that is associated with the value of the 
specified argument 
 
• VINFORMATWX (expression) 
Returns the informat width that is associated with the value of the 
specified argument 
 
• VINFORMATX (expression) 
Returns the informat that is associated with the value of the 
specified argument 
 
The following example illustrates how V functions VYPE and 
VFORMAT can be used to write a formatted value to another 
variable, while retaining the original format.   

   
if vtype(name)='N' then do; 
    new_var=putn(name,vformat(name)); 
end; 
else do; 
    new_var= putc(name,vformat(name)); 
end; 

 
New Date and Time Functions  
 
A common topic among SAS programmers is the different ways to 
determine and or define duration: roughly the amount of time 
passing between two points in time.   In the past, most solutions 
involved the use of INTCK or INTNX, which have their strong and 
weak points.  The new functions DATDIF and YRDIF should 
make the task of determining time duration easier.   
  
• DATDIF(sdate,edate,basis) 
Returns the number of days between two dates 
 
• JULDATE7(date)  
Returns a seven-digit Julian date from a SAS date value 
 



• YRDIF(sdate,edate,basis) 
Returns the difference in years between two dates 
 
Both DATDIF and YRDIF use the arguments for start date, end 
date and basis.  Start and End dates are very straightforward, but  
defining "basis" is more complicated.   As per the on-line docs: 
 
Basis identifies a character constant or variable that describes 
how SAS calculates the date difference. The following character 
strings are valid:  
 
'30/360'  
specifies a 30-day month and a 360-day year in calculating the 
number of years. Each month is considered to have 30 days, and 
each year 360 days, regardless of the actual number of days in 
each month or year. Alias: '360'  
Tip:  If either date falls at the end of a month, it is treated as if it 
were the last day of a 30-day month.   
 
'ACT/ACT'  
uses the actual number of days between dates in calculating the 
number of years. SAS calculates this value as the number of days 
that fall in 365-day years divided by 365 plus the number of days 
that fall in 366-day years divided by 366. Alias: 'Actual'  
 
'ACT/360'  
uses the actual number of days between dates in calculating the 
number of years. SAS calculates this value as the number of days 
divided by 360, regardless of the actual number of days in each 
year.  
 
'ACT/365'  
uses the actual number of days between dates in calculating the 
number of years. SAS calculates this value as the number of days 
divided by 365, regardless of the actual number of days in each 
year. 

 
Example: 
data _null;  

startdate = '11jul71'd; 
enddate = '11jul01'd;  
actday = datdif(startdate, enddate, 'act/act'); 
days360 = datdif(startdate, enddate, '30/360'); 
months = yrdif(startdate, enddate, 'act/act')*12; 
yr30 = yrdif(startdate, enddate, '30/360'); 
yract = yrdif(startdate, enddate, 'act/act'); 
yra_360 = yrdif(startdate, enddate, 'act/360'); 
yra_365 = yrdif(startdate, enddate, 'act/365');  

put  actday = days360 = months = yr30 = yract = 
       yra_360 = yra_365 = ;  
run;  
 
results:  

actday=10958  
days360=10800  
months=360  
yr30=30  
yract=30 
yra_360=30.438888889  
yra_365=30.021917808  

 
Missing and Error Functions  
 
• MISSING(numeric-expression | character-expression) 
Returns a numeric result that indicates whether the argument 
contains a missing value 
 
Like several of the previously mentioned functions, the MISSING 
function returns an affirmative indicator of 1 if a variable contains 
a missing value and negative indicator of  0 if the value is non-
missing. It works for both a character and numeric expressions. 
    
 

• character-variable=IORCMSG() 
Returns a formatted error message for _IORC_ 
 
IORCMSG returns the formatted error message associated with 
the most recently posted IROC code.  A _IORC_ message is the 
value of an automatic variable created when the Modify statement 
or the Set statement with the KEY= option is used.   This return 
code indicates whether the retrieval for matching observation was 
successful.  A returned value of 0 indicates a successful 
execution; a -1 indicates an end-of-file error; and any other value 
indicates a non-match occurrence. 
 
In the following program, observations are either rewritten or 
added to the updated master file that contains bank accounts and 
current bank balance. The program queries the _IORC_ variable 
and returns a formatted error message if the _IORC_ value is 
unexpected. 
  
    Example: 

libname bank 'SAS-data-library'; 
 
data bank.master; 
   set bank.trans; 
   modify bank.master key=Accountnum;   
   if (_IORC_ EQ %sysrc(_SOK)) then  
      do;  
         balance=balance+deposit;  
         replace;   
      end;  
else       
   if (_IORC_ = %sysrc(_DSENOM)) then  
      do; 
         balance=deposit;     
         output;   
         _error_=0;  
      end;    
else    
   do;    
      errmsg=IORCMSG();    
      put 'Unknown error condition:'  
      errmsg;  
   end;  
run;  

 
Web-Based Functions   
 
• HTMLDECODE(argument) 
Decodes a string containing HTML numeric character references 
or HTML character entity references and returns the decoded 
string 
 
• HTMLENCODE(argument) 
Encodes characters using HTML character entity references and 
returns the encoded string 
 
• URLDECODE(argument) 
Returns a string that was decoded using the URL escape syntax 
 
• URLENCODE(argument) 
Returns a string that was encoded using the URL escape syntax 
 

Example: 
data _null_; 
  text="This string contains characters !@#$%^& that must be 
encoded"; 
  html= 
     '<a href="/cgi-bin/broker.exe?_service= 
        default&_program=test.echo.sas&text= 
        '!!urlencode(text) !!'">Show encoded text</a>'   
  ; 
  put html; 
  run; 
    



 
  which produces the following valid HTML hyperlink: 
    
  <a href="/cgi-
bin/broker.exe?_service=default&_program=test.echo.sas&text
=This%20string%20contains%20characters%20%21@%23%2
4%25%5E%26%20that%20must%20be%20encoded">Show 
encoded text</a> 
    
  Urldecode() works the other way to decode these cryptic 
strings e.g. 
    
  data _null_; 
  text="%21Hello+World%21"; 
  text=urldecode(text); 
  put text=; 
  run; 
    
  which produces: 
    
  TEXT=!Hello World! 

 
Financial Functions  
 
With SAS being used by virtually all of the major financial 
institutions, some financial functions were certainly in order. 
 
• CONVX(y,f,c(1), ... ,c(k)) 
Returns the convexity for an enumerated cashflow 
 
• CONVXP(A,c,n,K,k0,y) 
Returns the convexity for a periodic cashflow stream, such as a 
bond 
 
• DUR(y,f,c(1), ... ,c(k)) 
Returns the modified duration for an enumerated cashflow 
 
• DURP(A,c,n,K,k0,y) 
Returns the modified duration for a periodic cashflow stream, 
such as a bond 
 
• PVP(A,c,n,K,k0,y) 
Returns the present value for a periodic cashflow stream, such as 
a bond 
 
• YIELDP(A,c,n,K,k0,p) 
Returns the yield-to-maturity for a periodic cashflow stream, such 
as a bond 
 
Interesting Uses of Functions 
 
The use of functions is often limited only by the imagination, 
creativity and need of the programmer.  The following code shows 
how various functions can be combined to solve dilemmas and 
make life easier. 
 
• TIP 00270 from WWW.SCONSIG.COM ****/ 
A COMPRESS function for Macro Variables 
By Peter Crawford 
 
    %macro Remove__ ( STRING, REMVECHR ); 
     %sysfunc( compress( &string, &REMVECHR)); 
    %mend Remove__ ; 
 
/*** Sample Call to Invoke ***/ 
%let  string__ = %remove__( "PLA" Derivative, '"'); 
 
%put &string__ ; 
PLA Derivative 
 
You will need to be careful in compressing quotes  
(single or double) - make sure you surround your  
preference (quotes to be compressed) with a pair of  

opposite quotes (ie, '"'   or "'" ).  
• TIP 00136 from WWW.SCONSIG.COM 
To Generate Nine Variables from a Nine Length Character String  
By  Paul Dorfman  
 
       data manyvar2(drop=addr len); 
         array v(10) $1; 
         addr = addr(v(1)); 
         len  = dim(v); 
         do until (eof); 
           set in end=eof; 
           call poke (string, addr, len); 
           output; 
         end; 
       run; 
 
About the Authors 
 
Gary McQuown is a SAS Quality Partner with Data and Analytic 
Solutions, Inc. of Fairfax VA.  He has previously presented at 
NESUG and SESUG. 
 
Dorothy Brown is a SAS Consultant currently on contract at Sprint 
Communications World Headquarters in Kansas.  This is her first 
presentation. 
 
Author Contact  
 
Gary McQuown 
Data and Analytic Solutions, Inc. 
10502 Assembly Drive, Fairfax, VA 2200 
mcquown@DASconsultants.com 
www.DASconsultants.com 
 
Dorothy Brown 
819-201 Cameron Village Drive, Matthews, NC 28105 
 
Bibliography: 

 
William F. Heffner, "DATA Step in Version 7: What's New?" SUGI 
23 Proceedings 
 
Denise J Moorman and Deanna Warner, "Updating Data Using 
the Modify Statement and the KEY=Option" SAS Observations 
 
Mike Rhoads, "Hidden Nuggets in Version 8: New Informats, 
Formats and Functions" SUGI 23 Proceedings 
 
SAS Institute Inc., Changes and Enhancements to Base SAS 
Software Release V8.1, Cary, NC: SAS Institute,  
 
Trademark Information  
 
SAS and SAS Quality Partner are registered trademarks of SAS 
Institute, Inc. in the USA and other countries.  


