
Paper 607

An Assembler Written in SAS®
Ed Heaton, Westat, Rockville, MD

ABSTRACT
Is SAS a programming language, i.e. can it handle problems

typically in the domain of a real language like C? To prove the
point, when I was asked to write an assembler for a hypothetical
machine (Leland Beck's SIC/XE) as a class project for a Systems
Programming class at Johns Hopkins University, I chose to write
the program in SAS.

This paper will present the programming strategy, techniques,
and problems encountered in carrying out the task. Structured
programming methods will be emphasized. Macro is used.
Numerous functions and formats will be encountered along the
road to success. In short, a lot of basic SAS is used and can be
learned in this presentation.

THE HYPOTHETICAL MACHINE
This assembler was written to produce object code for the

hypothetical machine described in Leland L. Beck’s book, “An
Introduction to Systems Programming.” That text describes two
machines: a basic machine called SIC (Simplified Instructional
Computer) and an extended-feature machine called SIC/XE.
This program will assemble code for either machine.

THE SIC
The features of the SIC machine include:
1. Memory – 8-bit bytes in 3-byte words for a total of 215 bytes.
2. Registers – 24-bits each consisting of:

a. A (0) – accumulator (used for arithmetic operations);
b. X (1) – index register (used for addressing);
c. L (2) – linkage register (the Jump to Subroutine (JSUB)

instruction stores the return address in this register);
d. PC (8) – program counter (contains the address of the

next instruction to be fetched for execution); and
e. SW (9) – status word (contains a variety of information,

including a Condition Code).
3. Data formats:

a. Character – strings of 8-byte ASCII codes and
b. Integer – 24-bit, 2’s complement.

4. Instruction formats (24-bit) consisting of:
a. first 8 bits contain the operation code (OpCode);
b. 9th bit is a flag (X) to indicate indexed-addressing; and
c. last 15 bits for the address.

5. Addressing modes (re. the X bit):
a. direct – the address is the target address and
b. indexed – the contents of the X register is added to the

address to get the target address.
6. An instruction set consisting of 24 distinct instructions.

THE SIC/XE
The XE version of the hypothetical machine includes the

following features:
1. Memory increased to 220 bytes.
2. Registers – four additional registers:

a. B (3) – base register (used for addressing);
b. S (4) – general working register (no special use);
c. T (5) – another general working register; and
d. F (6) – floating-point accumulator (48 bits).

3. Data formats – allows 48-bit floating-point numbers:
a. First bit indicates the sign;
b. Next 11 bits hold the exponent; and
c. Last 36 bits hold the mantissa.

4. Instruction formats:

a. Format 1 (1 byte) is simply the OpCode;
b. Format 2 (2 bytes) consists of

i. 8 bits for the OpCode,
ii. 4 bits for the address of the first register, and
iii. 4 bits for the address of the second register;

c. Format 3 (3 bytes) consists of
i. 6 bits for the OpCode,
ii. a bit-flag (n) requests indirect addressing,
iii. a bit-flag (i) specifies immediate operands,
iv. a bit-flag (x) to indicate indexed addressing,
v. a bit-flag (b) for base-relative addressing,
vi. a bit-flag (p) for program-counter-relative addressing,
vii. a bit-flag (e) which must be 0 for this format, and
viii. 12 bits for the displacement.

d. Format 4 (4 bytes) consists of
i. 6 bits for the OpCode,
ii. the same six flags as in the 3-byte instruction, and
iii. 20 bits for the address.

5. Addressing modes – the XE machine allows two additional
addressing modes:
a. Base-relative – the displacement (0 ≤ displacement ≤

4095) from the Format-3 instruction is added to the value
in the B register to get the address in memory and

b. Program-counter – the displacement (-2048 ≤
displacement ≤ 2047) from the Format-3 instruction is
added to the value in the PC register to get the address in
memory.

6. Instruction set – the XE machine has an additional 35
operation codes.

ASSEMBLY CODE
The format for the assembly code is as follows.
• 1 A decimal point indicates a comment line.
• 1-6 Statement label.
• 8-14 Mnemonic operation code.
• 16-21 Operand.
• 23-60 Comment.
• 16-60 Byte Literal. Hexadecimal literals are of the form

X'000030'
and character literals should be of the form

C'The prime numbers less than 1024.'
Comments can follow the Byte Literal.

THE ASSEMBLER
Most assemblers make two passes of the source program.

This assembler is no exception. The first pass collects label
definitions and assigns addresses. The second pass performs
most of the work. The top-level macro of the assembler (macro
MAIN – called at the end of the code) consists mainly of two
macro calls.

%Macro MAIN ;
%PassOne()
%PassTwo()

%Mend MAIN ;
We need to generate error messages; so start a macro to do

just that. We will add WHEN statements as we go along.
%Macro GenerateErrorMessage (errorNumber) ;

error = &errorNumber ;
Put

@01 "ERROR("
@07 error
@11 "): Line="
@19 lineNumber

@ ;
Select (error) ;

…
Otherwise ;

End ;
%Mend GenerateErrorMessage ;

PASS 1
Ok, now to work. Start with pass one. Here we will define our

symbols. The tasks are:
• Assign addresses to all statements in the program;
• Save the values (addresses) assigned to all labels for use in

Pass 2; and
• Perform some processing of assembler directives. (This

includes processing that affects address assignments, such
as determining the length of data areas defined by BYTE,
RESW, etc.).

We need to read the source code and create two tables. One
is the symbol table and the other is simply an intermediate
working file. The following DATA step will create the two tables
and an ASCII text file of error messages. The SymTab table
includes the name and the location counter for each statement
label in the source program. The IntermediateFile contains each
soruce statement with its assigned address, error indicators, etc.
The error file gets written to by the %GenerateErrorMessage
macro.

We need to create an array to hold the statement labels so that
we can check to assure that they are unique. There can only be
one label per statement, so set the length of the array is equal to
the number of statements. Add the task of finding the number of
statements to the macro before the DATA step.

%Macro PassOne () ;
%GetNumberOfProgramStatements()
Data

%DefineSymTab()
%DefineIntermediateFile()

;
File Errors ;
%DefinePassOneColumns()
InFile Program

lRecL=60
pad
end=_lastRecord

;
Input @ ;
lineNumber = _n_ ;
code = _inFile_ ;
If (subStr(code , 1 , 1) eq ".")

then go to FINISH ;
Else do ;

%ProcessAStatement()
End ;

FINISH: Output library.IntermediateFile ;
Run ;

%Mend PassOne ;
The input to the DATA step is the assembly program. The

record length is 60 characters; I like to use LRECL and PAD to
ward off input errors. The END statement is not required in the
assembly language, so we used END= to mark the last record.

Notice that we did not really input anything. We just read the
record into the input buffer. The contents of the input buffer is
simply a character string; we can process this character string
like we could any character variable.

Lines beginning with “.” contain comments only.
That’s the end of the DATA step and the first pass.

PASS 2
In the second pass we will assemble the instructions and

generate the object program. The tasks are:
• Assemble instructions (translating operation codes and

looking up addresses).
• Generate data values defined by BYTE, WORD, etc.
• Perform additional processing of assembler directives.
• Write the object program and the assembly listing.

%Macro PassTwo () ;
%GetLabelAddresses()
%SetBaseAddresses()
%If &XEFlag %then %do ;

%CalculateDisplacement()
%End ;
%CreateInstructionCodes()
%CreateObjectCodes()
%WriteProgramListing()
%WriteObjectCodeFile()

%Mend PassTwo ;
That's it. Done.

DETAILS
Oh, yeah. We need to define these macros that we used.

SUPPORTING MACROS

GET NUMBER OF PROGRAM STATEMENTS
We chose to store the labels in an array and in the SymTab

table. The array is used to assure that the label is unique. To set
the upper bound for the array, scan the assembler code, reading
only the first byte of each record into the buffer. Then save the
number of records in a macro variable. Here is a macro to get
this upper bound. Comments start with a decimal point (.); let's
not include them in the count.

%Macro GetNumberOfProgramStatements () ;
%Global statements ;
Data _null_ ;

InFile program lRecL=1 end=eof ;
Input ;
If (_inFile_ ne ".") then

statements ++1
;
If eof then call symPut(

"statements"
, left(put(statements , 8.))
) ;

Run ;
%Mend GetNumberOfProgramStatements ;

DEFINE SYMTAB
The symbol table includes the name and value (address) for

each label in the source program.
%Macro DefineSymTab () ;

library.symTab (
label= "Symbol Table"
index= (label)
keep= label locCtr
where= (label not in (" " , "."))

)
%Mend DefineSymTab ;

DEFINE INTERMEDIATE FILE
Pass 1 usually writes an intermediate file that contains each

source statement together with its assigned address, error
indicators, etc.

%Macro DefineIntermediateFile () ;
library.IntermediateFile (

label= "Intermediate File"
keep=

lineNumber loc code locCtr label
mnemonic operand literal byteString
nFlag iFlag xFlag bFlag pFlag eFlag
eFlagShift format2Flag error

)
%Mend DefineIntermediateFile ;

DEFINE PASS-ONE COLUMNS
Let's use an ATTRIB statement to define the columns of both

tables output by the %PassOne macro.
%Macro DefinePassOneColumns () ;

Attrib
lineNumber

label="Line Number"
format=z4.

loc

label="Address of Instruction"
format=hex6.

Code
label="Code"
length=$60
format=$60.

locCtr
label="Location Counter"
format=hex6.

label
label="Label"
length=$6
format=$6.

mnemonic
label="Mnemonic Operation Code"
length=$6
format=$6.

operand
label="Operand"
length=$8
format=$8.

literal
label="Literal Value"
format=hex6.

byteString
label="Literal Value Byte String"
length=$84

nFlag
label="Indirect Flag"

iFlag
label="Immediate Flag"

xFlag
label="Index Flag"

bFlag
label="Base-Relative Flag"

pFlag
label="Program-Counter Flag"

eFlag
label="Extended-Addressing Flag"

eFlagShift
label="Extended-Address Bit-Shifter"
format=hex4.

format2Flag
label="Format 2 Flag"

error
label="Error Code"
format=z4.

;
Length _label1-_label&statements $6 ;
Array symTab [*] $

_label1-_label&statements
;
Retain _firstRecord 1 ;
Retain locCtr _label1-_label&statements ;

%Mend DefinePassOneColumns ;

We retained _firstRecord; it will keep us informed on how to
process the statements. We also retained the location counter
(locCtr) and buckets for the statement labels (_label1-
_label&statements).

PROCESS A STATEMENT
Read the characters in columns 1-6 of the assembler code;

this is reserved for labels. Then compare the length of the label
with all leading and trailing spaces removed with the length of
the label with all spaces removed to determine if there are
imbedded spaces.

%Macro ProcessAStatement () ;
Input label $ 1-6 @ ;
label = upCase(label) ;
If (

length(label) ne
length(compress(label))

) then do ;
%GenerateErrorMessage(1)

End ;
%CheckForEFlag()
%ReadMnemonic()
Select ;

When (_firstRecord) do ;

%ProcessFirstStatement()
End ;
When (mnemonic eq "END") do ;

%ProcessEndStatement()
End ;
Otherwise do ;

%ProcessMiddleStatement()
End ;

End ;
%Mend ProcessAStatement ;

We checked to see if the E flag needed to be set because
extended format instructions are four bytes long. We also read
the value in the field for mnemonic operation codes; if it contains
the END directive, we need to proceed differently.

The %GenerateErrorMessage macro will write error
messages; let's put this message in the macro before we forget.

When (1) put @24
"Label contains imbedded spaces."

;

GET LABEL ADDRESSES
Add the location counter values from the Symbol Table to the

records that have a symbol in the Operand Field. First merge the
location counter values into the table created by %PassOne.

Then we need to generate errors for those assembler
statements where the operation code requires a valid label (SIC
machine only).
We will use the ?? modifier to supress SAS error handling as we
attempt to read the operand into a numeric field. If the
conversion works, we will write that number to the target address.

We need a list of the mnemonic operation codes to be sure
that the statement is valid. We will use a macro variable to hold
this list. This macro variable will look like the following.

"ADD" "ADDF" "ADDR" "AND" ... "TIXR" "WD"

The OpCodes are stored in a SAS data set called OpTab. Let’s
look at the code to create this macro variable.

%Macro GetOpCodes () ;
%Global opCodes ;
Proc sql noPrint ;

Select
quote(trim(mnemonic))

into :opCodes separated by " "
from library.OpTab

;
Quit ;

%Mend GetOpCodes ;

We will call this macro from the %PassOne macro.
%Macro PassOne () ;

%GetNumberOfProgramStatements()
%GetOpCodes()
Data

…
Run ;

%Mend PassOne ;

Now, we can code our %GetLabelAddresses macro.
%Macro GetLabelAddresses () ;

Proc sql ;
Create table PassTwo as

select
IntermediateFile.*

, symTab.locCtr as targetAddress
from library.IntermediateFile

left join library.symTab
on (

IntermediateFile.operand
= symTab.label
)
order by IntermediateFile.lineNumber

;
Quit ;
Data PassTwo ;

File Errors mod ;
Set PassTwo ;
If (

not &XEFlag
& (mnemonic in (&opCodes))

& (mnemonic not in (
&standAloneOpCodes

))
& missing(targetAddress)
) then do ;

%GenerateErrorMessage(2)
End ;
If (

missing(targetAddress)
& not missing(input(operand,?? 9.))
) then

targetAddress = input(operand,?? 9.)
;

Run ;
%Mend GetLabelAddresses ;

Add the error message to the %GenerateErrorMessage
macro.

When (2) put @24
"Your operand is not a defined label."

;

SET BASE ADDRESSES
Search for the BASE assembler directive. If found, store the

address for computing base-relative addressing.
%Macro SetBaseAddresses () ;

Data PassTwo ;
Set PassTwo ;
Attrib

baseAddr
label= "Base Address"
length= 4
format= hex6.

;
Retain baseAddr ;
If (mnemonic eq "BASE") then do ;

baseAddr = targetAddress ;
targetAddress = . ;

End ;
Run ;

%Mend SetBaseAddresses ;

CALCULATE DISPLACEMENT
If we are assembling code for an XE machine, then we need to

calculate the displacement for relative addressing.
If the operand field contains a number, we do not want to

calculate a displacement. To test for the number, attempt to
convert the value to a number with the INPUT function. Use the
?? format modifier to suppress error messages. If the field does
not contain a number, the the INPUT function will return a
missing value which can be tested with the MISSING function.

We will first test to see if we can use program-counter-relative
addressing. If we cannot, we will test to see if we can use base-
relative addressing. If we can't use either, then the E flag had
better be set.

%Macro CalculateDisplacement () ;
Data PassTwo ;

Set PassTwo ;
File Errors mod ;
If missing(

input(operand , ?? 9.)
) then select ;

When (
-2048 le
(targetAddress – locCtr) le
2047

) do ;
pFlag = 1 ;
targetAddress =

targetAddress - locCtr
;
If (targetAddress lt 0) then

targetAddress =
input(subStr(put(

targetAddress , hex6.
) , 4)

, hex6.
)

;

End ;
When (0 le (

targetAddress – baseAddr
) le 4095) do ;

bFlag = 1 ;
targetAddress =

targetAddress - baseAddr
;

End ;
Otherwise if (

missing(eFlag)
& (upCase(mnemonic) ne "END")
& not missing(targetAddress)
) then do ;

%GenerateErrorMessage(3)
End ;

End ;
Run ;

%Mend CalculateDisplacement ;

Add the error message to the %GenerateErrorMessage
macro.

When (3) put @24
"You must use extended format for direct"
" addressing."

;

CREATE INSTRUCTION CODES
This macro will combine the OpCode, the address, and, if

necessary, an index flag to create an Instruction Code.
• The n flag bit is used to indicate indirect-addressing mode.

It is the 18th bit from the right. E.g.:
0000 0010 0000 0000 0000 0000 -> X'020000'

• The i flag bit is used to indicate immediate-addressing
mode. It is the 17th bit from the right. E.g.:
0000 0001 0000 0000 0000 0000 -> X'010000'

• The x flag bit is used to indicate indexed-addressing mode.
It is the 16th bit from the right. E.g.:
0000 0000 1000 0000 0000 0000 -> X'008000'

• The b flag bit is used to indicate base-relative-addressing
mode. It is the 15th bit from the right. E.g.:
0000 0000 0100 0000 0000 0000 -> X'004000'

• The p flag bit is used to indicate program-counter-
addressing mode. It is the 14th bit from the right. E.g.:
0000 0000 0010 0000 0000 0000 -> X'002000'

• The e flag bit is used to indicate extended-addressing mode.
It is the 21st bit from the right of this 4-byte instruction. E.g.:
0000 0000 0001 0000 0000 0000 0000 0000 -> X'00100000'
%Macro CreateInstructionCodes ;

Proc sql ;
Create table library.PassTwo as

select
PassTwo.*

, OpTab.opCode
, sum(

OpTab.opCode
* input("010000" , hex6.)
* eFlagShift

, PassTwo.nFlag
* input("020000" , hex6.)
* eFlagShift
* &XEFlag

, PassTwo.iFlag
* input("010000" , hex6.)
* eFlagShift
* &XEFlag

, PassTwo.xFlag
* input("008000" , hex6.)
* eFlagShift

, PassTwo.bFlag
* input("004000" , hex6.)
* eFlagShift
* &XEFlag

, PassTwo.pFlag
* input("002000" , hex6.)
* eFlagShift
* &XEFlag

, PassTwo.eFlag
* input("00100000" , hex8.)
* &XEFlag

, PassTwo.targetAddress
) as instructionCode format=hex6.

from PassTwo left join library.OpTab
on (
PassTwo.mnemonic eq OpTab.mnemonic

)
order by PassTwo.lineNumber

;
Quit ;

%Mend CreateInstructionCodes ;

We have not created the variable eFlagShift. When we do, it
will be used to left-shift the bits of the Instruction Code so that we
have a Format-4 instruction. EFlagShift will have values of
X'0001' or X'0100'. If the instruction code is multiplied by the
latter, it becomes a 4-byte instruction. Multiplying by the former
does nothing.

The flags nFlag, iFlag, xFlag, bFlag, pFlag, and eFlag have
values of zero or one. If zero, then zero is added to the sum.

CREATE OBJECT CODES
Let's create character-based, user-readable representations of

the object code for our instructions.
%Macro CreateObjectCodes () ;

Data library.PassTwo ;
Length objectCode $100 ;
Set library.PassTwo ;
If (mnemonic not in (

"START","BASE","EQU","ORG","END"
)) then do ;

If (eFlag)
then objectCode = put(

instructionCode , hex8.
) ;
Else objectCode = put(

instructionCode , hex6.
) ;

End ;
If format2Flag then objectCode =

subStr(objectCode , 1 , 4)
;
If not missing(literal) then

objectCode = put(literal , hex6.)
;
If not missing(byteString) then

objectCode = byteString
;

Run ;
%Mend CreateObjectCodes ;

WRITE PROGRAM LISTING
Write a file that contains the program listing and the errors.

Notice that I used the MOD option so that I could append the
error file to the assembler listing. For that listing I simply read a
record using the INPUT statement and wrote that record using
the _INFILE_ automatic variable.

%WriteProgramListing () ;
Title2 "Assembler Listing" ;

Proc printTo print=listing new ;
Proc print data=library.PassTwo ;

Id lineNumber ;
Var loc code objectCode ;

Run ;
Proc printTo print=print ;
Data _null_ ;

InFile Errors ;
File listing mod ;
Input ;
If (_n_ eq 1) then put //

"***** Error Messages *****"
/ ;
Put _inFile_ ;

Run ;
Title2 ;

%Mend WriteProgramListing ;

WRITE OBJECT CODE FILE
Create the Object Code File. Well, actually create a file of

ASCII records of the hexidecimal representation of the object
code using a header record, text records, and an end record. We
will use two passes of the library.PassTwo data set to
accomplish this: pass one will write the Header and Text records;
pass two will write the Modify and End records.

To make the Object Code File easier for humans to read, we
will insert a caret (^) between each instruction. We will use the
COMPRESS function to find the length of the object code with the
carets removed. This is the true length of the object code, which
is limited to 30 bytes (60 half-bytes).

A character string input by a BYTE directive can contain more
than 30 bytes, so we need to be able to partition that string
across two text records.

First we will cycle through the object code for the program
instructions, accumulate lines of object code, and write either a
header record or text records to the Object Code File.

%Macro WriteObjectCodeFile () ;
Data _null_ ;

Format
startingAddress hex6.
lengthOfObjectCodeField hex2.

;
Length objectCodeField $90 ;
Retain startingAddress objectCodeField;
Retain splitFlag 0 ;
Set library.PassTwo (where=(

subStr(code , 1 , 1) ne "."
)) ;
File objCode ;
Select (mnemonic) ;

When ("START") do ;
%WriteHeaderRecord()

End ;
When ("END") do ;

%WriteTextRecord()
End ;
Otherwise do ;

If (
mnemonic in ("RESW","RESB")

) then do ;
%WriteTextRecord()
%ProcessTextRecord()

End ;
If missing(objectCodeField)

then startingAddress = loc
;
If ((

length(compress(
objectCodeField , "^"

)) + length(objectCode)
) le 60)

then do ;
%AccumulateObjectCode()

End ;
Else do ;

If (length(compress(
objectCodeField , "^"

)) gt 60)
then do ;
%SplitLongByteString()
%ProcessTextRecord()

End ;
Else do ;
%WriteTextRecord()
%ProcessTextRecord()

End ;
End ;

End ;
End ;

Run ;
Next, cycle through the object code again, searching for

extended-format flags. When found, write Modify records. Write
an End record when done.

Data _null_ ;
Length objectCodeField $90 ;

Format startingAddress hex6. ;
Set library.PassTwo (where=

(subStr(code , 1 , 1) ne ".")
) ;
File objCode mod ;
Select ;

When (
(eFlag eq 1)

& missing(input(operand, ?? 9.))
) do ;

%WriteModifyRecord()
End ;
When (mnemonic eq "END") do ;

%WriteEndRecord()
End ;
Otherwise ;

End ;
Run ;

%Mend WriteObjectCodeFile ;

CHECK FOR E FLAG
If the 4-byte extended format (Format 4) is used, the format

must be specified with the prefix + added to the operation code in
the source statement. It is the programmer's responsibility to
specify this form of addressing when it is required.

%Macro CheckForEFlag () ;
Input @7 _eFlagField $char1. @ ;
Select (_eFlagField) ;

When (" ") eFlagShift = 1 ;
When ("+") do ;
eFlag = 1 ;
eFlagShift = input("0100",hex4.) ;

End ;
Otherwise do ;
%GenerateErrorMessage(4)

End ;
End ;

%Mend CheckForEFlag ;
Of course we don't want to forget to describe error 2 in our

%GenerateErrorMessage macro.
When (4) put @24

"Column 7 must be"
%If (&XEFlag eq 1) %then " a + or" ;
" blank."

;

READ MNEMONIC
The mnemonic operation code is restricted to columns 8

through 14. This macro will read the mnemonic code and test to
assure that it contains no blanks.

%Macro ReadMnemonic () ;
Input mnemonic $ 8-14 @ ;
mnemonic = upCase(mnemonic) ;
If (

length(mnemonic) ne
length(compress(mnemonic))

) then do ;
%GenerateErrorMessage(5)

End ;
%Mend ReadMnemonic ;

Now let's go back to our %GenerateErrorMessage macro and
describe error 3.

When (5) put @24
"The Mnemonic contains imbedded spaces."

;

PROCESS FIRST STATEMENT
The processing of the first record is unique enough that we

have a macro just to read it.
%Macro ProcessFirstStatement () ;

If (mnemonic eq "START")
then do ;

%ProcessNOriFlag()
%ReadOperand()
locCtr = input(operand , hex6.) ;
Call symPut(

"StrtAddr"
, trim(left(put(locCtr,hex6.)))

) ;
End ;
Else locCtr = 0 ;

loc = locCtr ;
_firstRecord = 0 ;

%Mend ProcessFirstStatement ;

PROCESS END STATEMENT
The processing of the last record is unique enough that we

have a macro just to read it.
%Macro ProcessEndStatement () ;

loc = locCtr ;
Call symPut(

"EndAddr"
, trim(left(put(locCtr,hex6.)))
) ;
% ReadOperand()

%Mend ProcessEndStatement ;

PROCESS MIDDLE STATEMENT
First we want to store the address of the instruction. If we

have a value in the space reserved for statement labels we need
to make sure it is a valid label. Finally, we need to determine if
the OpCode is a Format-2 instruction and proceed accordingly.

%Macro ProcessMiddleStatement () ;
loc = locCtr ;
If (upCase(label) ne " ") then do ;

%VerifyLabel
End ;
If (mnemonic in (&opCodes))

then do ;
%ProcessOpCodeInstruction()

End ;
Else do ;

%ProcessAssemblerDirective()
End ;

%Mend ProcessMiddleStatement ;

WRITE HEADER RECORD
This macro will write a header record. The format of the

header record is as follows; the numbers are the columns.
• 1 H
• 2 field separator (^)
• 3-8 program name
• 9 field separator (^)
• 10-15 starting address of object program (hexadecimal)
• 16 field separator (^)
• 17-22 length of object probram in bytes (hexadecimal)
%Macro WriteHeaderRecord () ;

_ProgramLength = put(
input("&EndAddr" , hex6.) -
input("&StrtAddr" , hex6.)

, hex6.
) ;
Put

@01 "H^"
@03 label
@09 "^&StrtAddr"
@16 "^"
@17 _ProgramLength

;
%Mend WriteHeaderRecord ;

WRITE TEXT RECORD
This macro will write a text record. The format of the text

record is as follows; the numbers are the columns.
• 1 T
• 2 field separator (^)
• 3-8 starting address for object code in this record

(hexadecimal)
• 9 field separator (^)
• 10-11 length of object code in this record in bytes

(hexadecimal)
• 12 field separator (^)
• 13-?? object code, represented in hexadecimal (2 columns

per byte of object code -- This section of the record
will have field separators between each section of
object code. The object code is limited to 60 half-
bytes, but the field separators will lengthen this.)

%Macro WriteTextRecord () ;
lengthOfObjectCodeField = length(

compress(objectCodeField , "^")
) / 2 ;
If (

lengthOfObjectCodeField gt 1
) then put

@01 "T^"
@03 startingAddress
@09 "^"
@10 lengthOfObjectCodeField
@12 objectCodeField

;
%Mend WriteTextRecord ;

PROCESS TEXT RECORD
Start a text record by initializing the object code field to a caret

followed by the first object code. If the split flag is set, then there
is already some object code, so simply append to it.

%Macro ProcessTextRecord () ;
If splitFlag

then do ;
objectCodeField =

trim(objectCodeField)
|| "^" || objectCode

;
splitFlag = 0 ;

End ;
Else do ;
If not missing(objectCode)

then do ;
objectCodeField =

"^" || objectCode
;
startingAddress = loc ;

End ;
Else objectCodeField = " " ;

End ;
%Mend ProcessTextRecord ;

ACCUMULATE OBJECT CODE
Add the new object code to the text record, and increment the

lengthOfObjectCode variable.
%Macro AccumulateObjectCode () ;

If (not missing(objectCode)) then do ;
objectCodeField =

trim(objectCodeField)
|| "^" || objectCode

;
lengthOfObjectCodeField =

lengthOfObjectCodeField
+ length(objectCode) / 2
;

End ;
%Mend AccumulateObjectCode ;

SPLIT LONG BYTE STRING
First set the split-code flag. Then write the extra object code to

the RemainingObjectCode variable. Now write the text record
with the first 60 half-bytes of object code. Finally, initialize the
object code field of the new text record with the bytes of object
code that we chopped off from the too-long object code.

%Macro SplitLongByteString () ;
splitFlag = 1 ;
remainingObjectCode = subStr(compress(

objectCodeField , "^"
) , 61) ;
objectCodeField = subStr(

objectCodeField , 1 , 61
) ;
%WriteTextRecord
startingAddress = startingAddress + 30 ;
objectCodeField =

"^" || remainingObjectCode

;
%Mend SplitLongByteString ;

%WRITEMODIFYRECORD
This macro will write a MODIFY record. The format of the

modify record is as follows.
• 1 M
• 2 field separator (^)
• 3-8 starting location of the address field to be modified,

relative to the beginning of the program
(hexadecimal)

• 9 field separator (^)
• 10-11 length of the address field to be modified, in half-

bytes (hexadecimal)
%Macro WriteModifyRecord () ;

startingAddress = loc + 1 ;
Put

@01 "M^"
@03 startingAddress
@09 "^"
@10 "05"

;
%Mend WriteModifyRecord ;

%WRITEENDRECORD
This macro will write an END record.
• 1 E
• 2 field separator (^)
• 3-8 address of first executable instruction in object

program (hexadecimal)
%Macro WriteEndRecord () ;

Put @01 "E^" @03 instructionCode ;
%Mend WriteEndRecord ;

PROCESS N OR I FLAG
In our assembler language, indirect addressing is indicated by

adding the prefix @ to the operand. The n bit is set to indicate
that the contents stored at this location represent the address of
the operand, not the operand itself. A # prefix indicates
immediate addressing where the target address (not the contents
stored at that address) becomes the operand; so we will set the i
bit.

%Macro ProcessNOrIFlag () ;
Input @15 _NIFlagField $char1. @ ;
If ((nFlag + iFlag) ne 0)

then select (_NIFlagField)
;

When (" ") do ;
nFlag = 1 ;
iFlag = 1 ;

End ;
When ("@") do ;

nFlag = 1 ;
iFlag = 0 ;

End ;
When ("#") do ;

nFlag = 0 ;
iFlag = 1 ;

End ;
Otherwise do ;

%GenerateErrorMessage(6)
End ;

End ;
%Mend ProcessNOrIFlag ;

Finnally describe error 6 in the %GenerateErrorMessage
macro.

When (6) put @24
"Invalid character in OpCode previx."

/ @30 "Specify @ for Indirect addressing"
/ @30 "or # for Immediate addressing "
;

READ OPERAND
This macro will read the operand and set the x flag. Things

can get a bit tricky here; the operand can be:

• a statement label followed by a comma and an X (for
indexed addressing),

• an integer if the mnemonic field contains the RESB,
RESW, or WORD directives, or

• a character or hex string if the mnemonic field contains
the BYTE directive.

Not all of these are limited to eight characters, so let's just
read the entire remainder of the record and then throw away all
that follows the first blank space.

%Macro ReadOperand () ;
Input _opPlus $ 16-60 @ ;
If not missing(_opPlus) then

_opPlus = subStr(
_opPlus

, 1
, index(_opPlus , " ") - 1
)

;
If (

length(_opPlus) gt 8
) then do ;

%GenerateErrorMessage(7)
End ;
operand = upCase(_opPlus) ;
If index(operand , ",X")

then do ;
operand = subStr(

operand
, 1
, index(operand , ",") - 1
) ;
xFlag = 1 ;

End ;
Else xFlag = 0 ;

If (
subStr(left(operand) , 1 , 1) eq "="

) then do ;
%GenerateErrorMessage(8)

End ;
If (

indexC(
operand

, "'"
, '"'
, "!@#$%^&*()_=|\:;<>?./~`"
)

| (indexc(operand,"+-") gt 1)
) then do ;

%GenerateErrorMessage(9)
End ;
If (

length(operand) ne
length(compress(operand))

) then do ;
%GenerateErrorMessage(10)

End ;
%Mend ReadOperand ;

So let's add the error descriptions to the
%GenerateErrorMessage macro.

When (7) put @24
"Comments must be blank-separated from"
" the operand."

;
When (8) put @24

"This assembler does not support"
" literals."

;
When (9) put @24
"You have an illegal character in your"
" operand."

;
When (10) put @24

"The operand contains imbedded spaces."
;

VERIFY LABEL
The label field should contain only labels. So use the array of

previously stored labels to determine that we have no duplication.

If the label already exists in symTab, there is an error. If we have
searched all the previously stored labels and have not found the
current label, then we will add the current label to the stored
labels and cease looking.

%Macro VerifyLabel () ;
Do _i=1 to dim(symTab) ;

If (label eq symTab[_i])
then do ;

%GenerateErrorMessage(11)
End ;
Else if missing(symTab[_i])
then do;

symTab[_i] = label ;
Go to WRITETOSYMTAB ;

End ;
End ;

WRITETOSYMTAB: Output library.symTab ;
%Mend VerifyLabel ;

Now let's write the error message.
When (11) put @24

"The label has already been used."
;

PROCESS OPCODE INSTRUCTION
Some of the operation codes are 2-byte instructions. We need

to know which ones. So let's go back to the beginning of our
assembler create a list of the mnemonics for these OpCodes.

%Let Format2OpCodes =
"CLEAR"

, "COMPR"
, "DIVR"
, "MULR"
, "RMO"
, "SHIFTL"
, "SHIFTR"
, "SUBR"
, "SVCR"
, "TIXR"
;

Compare the mnemonic of the OpCode against this list and, if
this is a two-byte instruction, set the appropriate flags and
increment the location counter.

%Macro ProcessOpCodeInstruction () ;
If (mnemonic in (&Format2OpCodes))

then do ;
%ProcessFormat2Instruction()

End ;
Else do ;

format2Flag = 0 ;
locCtr = sum(locCtr , 3 , eFlag) ;
%ProcessNOrIFlag()
%ReadOperand()
If (

(mnemonic not in (
&standAloneOpCodes

))
& missing(operand)
) then do ;

%GenerateErrorMessage(12)
End ;
If (

not &XEFlag
& not missing(

input(operand , ?? 9.)
)

) then do ;
%GenerateErrorMessage(13)

End ;
End ;

%Mend ProcessOpCodeInstruction ;

Only the XE machine allows numbers in the operand field. So,
if we assembled on the basic SIC machine, we tested the
operand by attempting to write the characters to a number. Use
the ?? format modifier to suppress messages to the log.

We used a macro variable called &standAloneOpCodes that
we need to define. Let’s define it at the beginning of our
assembler where we defined &Format2OpCodes.

%Let standAloneOpCodes =
"FIX"

, "FLOAT"
, "HIO"
, "NORM"
, "RSUB"
, "SIO"
, "TIO"
;

Again, we need to add the error descriptions to the
%GenerateErrorMessage macro.

When (12) put @24 "Operand required." ;
When (13) put @24

"Your basic SIC computer cannot use"
" numbers for operands."

;

PROCESS ASSEMBLER DIRECTIVE
Assembler directives tell the assembler how to reserve

memory and how to preload that memory. They optionally control
addressing modes.

• Let's start with the WORD directive. This directive tells the
assembler to generate a one-word integer constant.

• Next we have the RESW directive. It tells the assembler to
reserve the indicated number of words for a data area.

• Now lets process the RESB directive to tell the assembler to
reserve the indicated number of bytes for the data area.

• Next comes the BYTE directive. It is used to generate a
character or hexadecimal constant, occupying as many
bytes as necessary.

• The BASE directive is only for the SIC/XE machine which
allows base-relative addressing. The programmer must tell
the assembler what the base register will contain during
execution of the program so that the assembler can
compute displacements.
%Macro ProcessAssemblerDirective () ;

format2Flag = 0 ;
Select (mnemonic) ;

When ("WORD") do ;
locCtr ++3 ;
%ReadOperand()
If missing(

input(operand , ?? 9.)
) then do ;

%GenerateErrorMessage(14)
End ;
Else literal = operand ;

End ;
When ("RESW") do;

%FindLengthOfRESW()
locCtr = locCtr + _length ;

End ;
When ("RESB") do ;

%FindLengthOfRESB()
locCtr = locCtr + _length ;

End ;
When ("BYTE") do ;

%ProcessBYTE()
locCtr = locCtr + _length ;

End ;
When ("BASE") do ;

%ReadOperand()
End ;
Otherwise do ;

%GenerateErrorMessage(15)
End ;

End ;
Again, we need to add the error descriptions to the

%GenerateErrorMessage macro.
When (14) put @24

"Undefined mnemonic."
;
When (15) put @24

"WORD must be a number."
;

PROCESS FORMAT-2 INSTRUCTION

If this is a two-byte instruction, set the appropriate flags and
increment the location counter. Two-byte instructions allow
register addresses as the operands; read these addresses.

%Macro ProcessFormat2Instruction () ;
Format2Flag = 1 ;
NFlag = 0 ;
IFlag = 0 ;
LocCtr = LocCtr + 2 ;
%ReadRegisters()

%Mend ProcessFormat2Instruction ;

FIND LENGTH OF RESW
Read the number for the WORD directive directly from the

assembler statement. Use the ?? input modifier, it will suppress
error handling so that anything read that is not the character
representation of a number will cause a missing value but no
error message will be written to the SAS log.

%Macro FindLengthOfRESW () ;
Input @16 _words ?? @ ;
If missing(_words)

then do ;
%GenerateErrorMessage(16)

End ;
Else _length = 3 * _words ;

%Mend FindLengthOfRESW ;

And add the error message to the %GenerateErrorMessage
macro.

When (16) put @24
"Invalid number of reserved words."

;

FIND LENGTH OF RESB
Read the number of requested reserved words directly from

the assembler statement. Again, use the ?? input modifier.
%Macro FindLengthOfRESB () ;

Input @16 _length ?? @ ;
If missing(_length) then do ;

%GenerateErrorMessage(17)
End ;

%Mend FindLengthOfRESB ;

Add the error message to the %GenerateErrorMessage
macro.

When (17) put @24
"Invalid number of reserved bytes."

;

PROCESS BYTE
To process the BYTE directive, we first need to determine if we

are reading a character string or a hexadecimal string. Since the
operands must start in the 16th column, and since the assembler
code is limited to 60 byte statements, we are limited to 43-byte
strings.

If the string in the assembler statement is a hexadecimal
string, then the length of the memory needed to store the string is
half the length of the byte string (It takes two characters to
represent a byte.).

If the string in the assembler statement is a character string,
then we must convert the character string to a hexadecimal
string.

%Macro ProcessBYTE () ;
Length _byteString $42 ;
Input _hexOrChar $ 16-16 @ ;
Select (upCase(_hexOrChar)) ;

When ("X") do ;
%GetByteString()
_length = length(_byteString) / 2 ;
byteString = _byteString ;

End ;
When ("C") do ;

%GetByteString()
_length = length(_byteString) ;
byteString = put(

trim(_byteString) , $hex.
) ;

End ;
Otherwise do ;

%GenerateErrorMessage(18)
End ;

End ;
%Mend ProcessBYTE ;

Add the error message to the %GenerateErrorMessage
macro.

When (18) put @24
"Byte string must be hexadecimal (X) or"
" character (C)"

;

READ REGISTERS
This macro will read the registers for the two-byte instructions.

It will read the first character of operand as the first register and,
if the second character of operand is a comma, it will then read
the third character as the second register.

%Macro ReadRegisters () ;
Input operand $ 16-18 @ ;
operand = upCase(operand) ;
Select (subStr(operand , 1 , 1)) ;

%AssignRegisterAddress(r1)
End ;
If (subStr(operand,3,3) eq ",") then do ;

Select (subStr(operand,3,3)) ;
%AssignRegisterAddress(r2)

End ;
End ;
operand = left(put(sum(

(r1 * input("1000" , hex4.))
, (r2 * input("0100" , hex4.))
) , 6.)) ;

%Mend ReadRegisters ;

GET BYTE STRING
Read the remainder of the assembler statement starting with

the first character after the X or C character which indicates the
type of byte string. Check to ascertain that the string is delimited
by single quote marks. Then strip the quote marks and store the
string in _byteString.

%Macro GetByteString () ;
Input _byteString $ 17-60 @ ;
If (subStr(_byteString,1,1) ne "'")

then do ;
%GenerateErrorMessage(19)

End ;
Else do ;

_byteString = subStr(
_byteString , 2

) ;
If not indexC(_byteString , "'")

then do ;
%GenerateErrorMessage(19)

End ;
Else _byteString = subStr(

_byteString
, 1
, index(_byteString , "'") - 1
) ;

End ;
%Mend GetByteString ;

Add the error message to the %GenerateErrorMessage
macro.

When (19) put @24
"Byte string must be enclosed in single"
" quotes."

;

ASSIGN REGISTER ADDRESS
This macro will convert the mnemonic register name to its

address.
%Macro AssignRegisterAddress (register) ;

When ("A") ®ister = 0 ;
When ("X") ®ister = 1 ;
When ("L") ®ister = 2 ;
When ("B") ®ister = 3 ;
When ("S") ®ister = 4 ;
When ("T") ®ister = 5 ;
When ("F") ®ister = 6 ;

Otherwise do ;
%GenerateErrorMessage(20)

End ;
%Mend AssignRegisterAddress ;

Don't forget the error message.
When (20) put @24

"Register must be one of"
" A, X, L, B, S, T, or F."

;

CONCLUSION
This assembler operates from a %MAIN macro that is called

on the last line of the code. Some preliminary initialization code
precedes the %MAIN macro. This includes definition of global
macro variables, creation of a window to get user-supplied
information, and creation of references to working libraries and
files.

The %MAIN macro called the %PassOne and %PassTwo
macros. %PassOne generated a list of the mnemonic operation
codes and stored them in an array. It created another array to
store the statement labels. %PassOne then generated a SAS
data set (IntermediateFile) containing the line number, the
location in memory of the code that it will generate for each
statement, the statement label, the mnemonic operation code,
the operand for the operation codes, literal values, and
hexadecimal representations of BYTE directives. It also
produced flags for the n, i, x, b, p, and e bits, and for 2-byte
instructions. Finally, %PassOne created a symbol table
(SymTab).

%PassTwo merged the addresses from SymTab onto
IntermediateFile from %PassOne using the
%GetLabelAddresses macro. It assigned base addressees to
each record and calculated displacements. It then created
hexadecimal instructions and the object code for each assembly
statement. Finally, %PassTwo wrote the assembler listing,
including any error messages, and the object code file.

While this was an exercise for a college class, I hope that you
found something to take home with you. We used several data
manipulation techniques, and the overall scheme is an example
of top-down programming in SAS.

REFERENCES
Beck, Leland L., An Introduction to Systems Programming, 3d
ed. (Reading, Massachusetts: Addison Wesley Longman, Inc.,
1997).

ACKNOWLEDGMENTS
I want to thank Ian Whitlock of Westat for his continual support

and encouragement in my career growth. He was an inspiration
before I met him, and has proven to be a wonderful mentor and
friend since.

I also want to thank Dianne Rhodes of Westat, who directed
my focus toward more career-enhancing facilities such as SAS
Users Groups and the SAS-L list-server when we both worked
elsewhere.

Finally, I want to thank all the wonderful and insightful
contributors to SAS-L for their selfless contributions. They have
proven to be my most valuable teaching aid.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.

Contact the author at:
Ed Heaton
Westat: An Employee-Owned Research Corporation
1650 Research Boulevard
Rockville, MD 20850
Work Phone: (301) 610-4818
Fax: (301) 294-3992
Email: EdwardHeaton@Westat.com

